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Abstract

This paper studies the effects of the NSF Science Development Program on universities and

local innovation, combining historical data from scientific publications, doctoral disserta-

tions, and patents. Introduced in 1965, the program awarded large institutional grants to

natural science and engineering departments at U.S. research universities. I exploit top-

ranked universities excluded from the program as a comparison group in a difference-in-

differences research design. First, I find that Science Development awards increased faculty

size, the number of PhDs awarded, and publications at funded universities. Second, I find

a patenting increase in commuting zones hosting funded universities, primarily attributable

to incumbent private firms and driven by commuting zones with established R&D-intensive

sectors. I find a larger effect in technology fields with high exposure to local universities’

research. I provide evidence indicating two main mechanisms behind the patenting increase:

greater reliance on scientific knowledge in patenting and the employment of local PhD grad-

uates in industrial R&D.
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1. Introduction

Universities are a crucial component of modern economies: they advance the knowledge frontier

and foster human capital, both key elements for the development of new technologies (Nelson

1962; Jaffe 1989; Mansfield 1995; Zucker et al. 1998; Ahmadpoor and Jones 2017). Previous

studies have shown that investments in basic research conducted by academic scientists or

individual laboratories can increase innovation in the private sector (Azoulay et al. 2019b;

Bergeaud et al. 2022). Other works have documented that the establishment of modern research

universities positively influenced innovation and economic development in their host locations

(Dittmar and Meisenzahl 2022; Andrews 2023).

However, little is known about the effects of institutional funding to established universities

on local innovation, particularly in the long term. While institutional grants involve larger

investments compared to typical principal-investigator programs, they are less complex inter-

ventions than establishing new research institutions. Nevertheless, the impact of such funding

programs on local innovation is ex-ante ambiguous, due to the substantial institutional and

geographic variation in how universities influence technology development (Zucker et al. 2002;

Bikard and Marx 2020; Lerner et al. 2024).

On the one hand, institutional grants may positively influence local innovation by enhancing

universities’ research capacity, thereby increasing the supply of scientific human capital and

facilitating knowledge diffusion from universities to private sector R&D. On the other hand,

even if institutional funds expand universities’ research capacity, it may not necessarily stimulate

local innovation. This could happen, for instance, if university outputs lack commercial impact,

or if private firms lack the capital to absorb the increased supply of scientists, networks to

establish partnerships with academic scientists, or, more broadly, the absorptive capacity to

benefit from university knowledge spillovers (Cohen and Levinthal 1989, 1990).

This paper studies the effects of institutional university funding on local innovation, focusing

on one of the largest programs of this kind in U.S. history, the National Science Foundation’s

(NSF) Science Development Program (SDP). Introduced in 1965, the SDP awarded sizeable

grants to natural science and engineering departments at 31 research universities across the
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U.S., aiming to expand the number of academic centers of research excellence in the country.

Each institution received a grant supporting up to six departments, totaling between $40 and

$60 million (in 2024 USD) and lasting five years, representing an expansion in the resources of

a typical chemistry department between 20% and 50% (NSF 1977a).

My analysis is based on a large-scale data collection, combining information from scien-

tific publications, PhD dissertations, and patents between 1960 and 1990. First, I track the

publications histories of all scientists affiliated with U.S. research universities and private com-

panies. Second, I collect data on all PhD graduates from U.S. research universities. Third, I

combine historical and modern patent records from the United States Patent and Trademark

Office (USPTO) and disambiguate inventors listed in both sources. Fourth, relying on citation

data from Marx and Fuegi (2022), I measure the links between patented inventions and scien-

tific articles. Fifth, I link PhD graduates and the authors of scientific publications to inventor

records, enabling me to assess their direct contribution to patenting and to observe publications

co-authored by academic and industrial scientists.

Because the program aimed to increase the number of institutions conducting first-rate re-

search, the NSF dismissed grant proposals from institutions already considered elite (NSF 1964;

Page 1968; Lomask 1976). I exploit these excluded top-ranked universities as a comparison group

in a difference-in-differences research design. To study university outcomes, I directly compare

funded and excluded universities. For local innovation outcomes, I compare commuting zones

hosting funded institutions with those hosting excluded top-ranked ones. Commuting zones

are clusters of counties exhibiting strong commuting ties and approximate the local economies

hosting each university (Tolbert and Sizer 1996; Autor and Dorn 2013).

Top-ranked universities are a suitable comparison group for three main reasons. First,

their exclusion from the program was based solely on their pre-existing elite status. Second,

they were precluded from the SDP selection process and were thus not evaluated alongside

institutions receiving funds. Third, historical evidence suggests they would have applied for—

and likely received—SDP funding if permitted. An analogous rationale supports commuting

zones hosting excluded top-ranked universities as a comparison group for those hosting the

funded ones. In addition, the selection of universities for the SDP was based on evaluations
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of their scientific capabilities rather than anticipated future trajectories of industrial R&D

within their regions, further mitigating concerns about selection bias between SDP-funded and

top-ranked universities’ commuting zones. Importantly, I provide evidence about the absence of

differential trends between SDP-funded and top-ranked universities and between the commuting

zones hosting them prior to the introduction of the program.

I start my analysis by focusing on university outcomes. I find that funded universities rapidly

increased the number of scientists, PhD dissertations, and publications in the natural sciences

and engineering after SDP grants were awarded, with no difference in the publications’ quality. I

find similar results using a control group of universities outside the elite but co-located with top-

ranked universities—facing an implicit exclusion from the program, using a comparison group

including all research universities in my sample, and testing a specification at the university-

scientific domain–year level, where I can control for domain–by–year fixed effects. The results

of two permutation tests indicate that my estimates are not driven by individual SDP-funded

or excluded top-ranked universities and that they are unlikely due to random chance.

Reassuringly, I do not detect any difference between funded and comparison universities

when I study the evolution of publications in the social sciences and humanities, disciplines not

receiving any SDP fund. Overall, my estimates indicate that SDP grants increased the research

capacity of funded universities.

The study of local innovation outcomes constitutes the main part of my investigation. My

analysis is based on a panel dataset of commuting zone–technology field pairs, allowing me

to account for year, commuting zone–by–technology field, and technology field–by–year fixed

effects. I find an increase in patenting for commuting zones hosting SDP-funded universities

relative to those hosting elite institutions. The effect becomes detectable approximately four

years after the SDP grants and lasts for the subsequent ten years, indicating a patenting increase

between 18% and 32% per year.

I test the robustness of my estimates in several ways. First, using newly released data from

Gross and Sampat (2024), I control for federal funding to industrial R&D in each commuting

zone-technology field-year cell. I find results highly comparable to the baseline, suggesting that

the large investments in the private sector initiated by the U.S. government during WWII and
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sustained during the Cold War (Gross and Sampat 2023; Kantor and Whalley 2023) are not

a confounding driver my estimates. Second, I introduce commuting zone–specific time trends,

controlling for unobserved time-varying factors unique to each commuting zone and evolving

systematically over time. I obtain estimates similar to the baseline, ruling out the possibility

that inventive activities in commuting zones hosting SDP-funded universities were already on a

virtuous trajectory prior to the SDP awards. Third, I test a specification using a control group of

commuting zones constructed with Mahalanobis matching, with results once again comparable

to those of my baseline specification. Lastly, I conduct two permutation tests, suggesting that

my estimates are not driven by any particular commuting zone in the sample—either hosting

SDP-funded or elite universities—and are unlikely driven by random chance.

I continue my analysis by investigating the heterogeneity of these effects based on assignee,

technology, and commuting zone characteristics. First, I find that the patenting increase is

driven by incumbent private firms, excluding any effect from newly created companies or firms

relocating to SDP-funded commuting zones. Second, I find that the patenting increase is driven

by technologies in the electrical and electronic engineering fields, followed by those in chemicals

and pharmaceuticals. Third, I find that the patenting effect is driven by commuting zones

displaying above-median patenting per capita prior to the introduction of the SDP, as well as

by commuting zones with an above-median share of patents citing the scientific literature.

I deepen my investigation by testing how the patenting effect varies across technology fields

based on their exposure to local university research. I do so by measuring the intellectual

proximity between patents in a given commuting zone–technology field pair and the publica-

tions of the local university prior to the SDP—a procedure akin to Bergeaud et al. (2022) and

Bergeaud and Guillouzouic (2024). Introducing this exposure measure as a continuous term

in my difference-in-differences specification, I find that the positive effect of the SDP on local

patenting is larger in technology fields with higher exposure to local university research.

I conclude my study by investigating the mechanisms underlying the patenting increase fol-

lowing the Science Development Program. The results of my analysis at the university level

indicate three main channels. First, the SDP may have increased the local supply of scientific

human capital, with new PhD graduates directly contributing to private-sector R&D activi-
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ties. Second, funded universities’ larger departments may have increased local firms’ opportu-

nities to establish formal collaborations with academic scientists. Third, funded universities’

expanded research capacity may have increased knowledge spillovers from universities to com-

panies through informal channels, such as local conferences or higher chances of interactions

between academic and industrial scientists.

Since all mechanisms may involve the diffusion of scientific knowledge from universities to

private-sector R&D, I first test whether local patenting’s reliance on science increased following

the SDP introduction. Following Ahmadpoor and Jones (2017), I construct a citation network

linking patents and scientific publications. I find that both patents directly citing scientific

publications and patents close but indirectly connected to the scientific literature increase in

commuting zones hosting an SDP-funded university. In contrast, I find a smaller and shorter-

lived positive effect for patents more distant in the network or fully unconnected from a scientific

publication. Importantly, I estimate an increase in the overall proportion of patents directly

citing the scientific literature in funded commuting zones after the SDP awards.

Next, I assess the role of scientific human capital. I find a sizable increase in patents co-filed

by PhD graduates from local universities and a smaller positive effect of the SDP introduction

on patents not filed by any local PhD graduate. Nevertheless, the relatively small proportion of

PhD graduates’ patents makes it unlikely that their contribution was the only mechanism behind

the patenting increase. To test the importance of formal university-industry collaborations, I

track patents and publications co-authored by academic and industrial scientists. I find very

few such patents and publications in my sample, and my estimates rule out any positive effect

of the SDP on either group.

Overall, my estimates indicate that scientific knowledge diffusion from universities to private

sector R&D and the increased availability of scientific human capital are the two drivers of the

increase in patenting following the introduction of the SDP. While these results exclude any

role played by formal university-industry collaborations, they do not exclude informal channels

contributing to scientific knowledge spillovers.

The results of this study contribute to several strands of literature. First, they add to

the literature on the relationship between academic research and industrial innovation (Jaffe
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1989; Mansfield 1991, 1995; Rosenberg and Nelson 1994; Cockburn and Henderson 1996, 2001;

Henderson et al. 1998; Zucker et al. 1998; Furman and MacGarvie 2007; Foray and Lissoni

2010). Recent studies in this literature have focused on the effects of funding programs targeting

principal investigators or individual research laboratories (Azoulay et al. 2019b; Bergeaud et al.

2022), declines in federal funding to individual academic scientists (Babina et al. 2023), shocks to

university revenues (Tabakovic and Wollmann 2019), changes in university patenting legislation

(Hvide and Jones 2018; Hausman 2022), and open access mandates on publicly funded research

(Bryan and Ozcan 2021). This paper, instead, studies one of the largest and few institutional

funding programs in U.S. history, investigating its effects on university research capacity and

on local innovation.1

Second, this study contributes to the broader literature on the economic effects of univer-

sities (Cantoni and Yuchtman 2014; Kantor and Whalley 2014; Dittmar and Meisenzahl 2022;

Andrews 2021b, 2023; Andrews and Smith 2023; Russell et al. 2024; Russell and Andrews 2024).

Prior research has mostly focused on the effects of establishing new universities. One exception

is Kantor and Whalley (2014), who study the local productivity effects of changes in univer-

sity expenditures driven by stock market returns shocks. My paper adds to this literature by

studying a policy aimed at increasing the research capacity of already established institutions,

providing novel evidence on its effects on private sector’s innovation and the mechanisms linking

them to university funding.

Third, this paper contributes to the literature on the economic effects of R&D funding

shocks during and after World War II. Previous studies have focused on the effects of U.S.

federal funding to applied R&D performed by both academic and private sector organizations

(Gross and Sampat 2023; Gross and Roche 2023), U.S. federal funds targeting mostly industrial

contractors (Kantor and Whalley 2023), or mission-oriented programs in the Soviet Union

1A broader and long-standing literature focuses on the relationship between basic science and innovation
(Bush 1945; Maclaurin 1953; Nelson 1959, 1962; Rosenberg 1982; Kline and Rosenberg 1986; Mowery 1997; Stokes
1997; Mokyr 2002; Ahmadpoor and Jones 2017; Poege et al. 2019). Closely related research streams investigate
university patenting and technology licensing, particularly in relation to the Bayh-Dole Act introduction in 1980
(e.g., Mowery et al. 2001, 2002, 2004; Jensen and Thursby 2001; Agrawal and Henderson 2002; Thursby and
Thursby 2002; Sampat 2006; Lissoni et al. 2008; Azoulay et al. 2009; Lissoni 2010), the dynamics of private
sector’s investments in basic science research (e.g., Cohen and Levinthal 1989, 1990; Zucker et al. 2002; Arora
et al. 2021a,b), and the role of public- and private-sector research in the U.S. innovation system (e.g., Arora et al.
2019, 2020; Fleming et al. 2019).
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(Schweiger et al. 2022). This paper adds to this literature by studying a funding initiative

directed exclusively at universities and investigating its effects on university research capacity

and its spillovers on local private sector innovation.2

The remainder of the paper is organized as follows. Section 2 provides a historical overview of

the Science Development Program. Section 3 describes my data sources and my disambiguation

and record linkage procedures. Section 4 describes my main empirical strategy. Section 5

presents the results on university outcomes. Section 6 presents the results on local innovation

outcomes. Section 7 concludes.

2. Historical Context: The NSF Science Development Program

In March 1964, the National Science Foundation (NSF) announced the Science Development

Program, also known as the “Centers of Excellence” initiative. The program aimed to strengthen

the research capacity of universities outside the group of the elite, particularly in geographic

locations which lacked an institution regarded as part of the top (NSF 1964). Running be-

tween 1965 and 1971, the Science Development Program allocated approximately $177 million

(equivalent to $1.76 billion in 2024 USD) through institutional grants to 31 universities, almost

exclusively to their departments in the biological and physical sciences and engineering (NSF

1977a).

The program emerged from a public debate on the need to increase the number of top

research universities in the U.S., both for the country’s welfare and to sustain the Cold War

science and technology race, made particularly salient by the Soviet Union’s 1957 launch of the

first artificial Earth satellite Sputnik (Geiger 1997). Such debate culminated in a 1960 report

from the President’s Science Advisory Committee, chaired by Glenn T. Seaborg, Nobel Prize-

winning chemist and UC Berkeley’s Chancellor. The “Seaborg Report,” as it became known,

called for an expansion of “first-rate academic centers” from “fifteen or twenty today [to] thirty

or forty in another fifteen years”, arguing that “[e]xisting strong institutions cannot fully meet

the nation’s future needs” and that “support to the rising centers will be repaid many times

over in service to society” (President’s Science Advisory Committee 1960, pp. 14-15).

2A related body of work investigates the effects of management training and technology transfer programs
introduced during and after World War II on firm productivity (Giorcelli 2019; Bianchi and Giorcelli 2022;
Giorcelli and Li 2024; Giorcelli 2024a,b).
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The Science Development Program was also influenced by a closely related debate on the

geographic and institutional distribution of federal research funds. Several members of Congress

and the Kennedy’s and Johnson’s Administration viewed the allocation of federal research funds

as too concentrated in few locations and few universities. That contrasted with the view held

by most members of the U.S. scientific elite, who believed that research excellence should be

the main criterion to allocate research funds, regardless of geographic or institutional equity

considerations (Graham and Diamond 1997).3

The Science Development Program addressed both the Seaborg Report’s plea and the gov-

ernment’s pressure to provide more support to academic research outside the geographic or

institutional elite. In 1963, the NSF approached Congress to ask for the necessary financial

appropriation for the Science Development Program. The program was initially turned down

and funds for its first three years of activity were approved by Congress only in January 1964,

after a period of uncertainty (Lomask 1976).

The NSF opened the Science Development Program to any higher education institution

with departments in science or engineering, except those recognized as part of the elite of the

country. In its March 1964 announcement, the NSF stated that “[s]ince the goal is to increase

the number of strong academic centers in science, institutions already recognized as being

outstanding in science should continue to depend on existing programs for assistance” (NSF

1964, p. 4). Howard E. Page, Head of the NSF Office of Institutional Programs in the 1960s,

noted that “[t]he program did exclude proposals from the unnamed and unnamable institutions

in the magic circle of the top twenty” (Page 1968, p. 115). According to Lomask (1976, p.

133) “it was understood that none of the “fifteen or twenty” top-rated institutions need apply.

When one of them [Caltech] did, its president received a polite note from Director Haworth,

reminding him that the development grants were strictly for the second-stringers.”

3For instance, based on a series of hearings held in 1963, the House Committee on Science generated a report
which critically noted the concentration of federal research funds in institutions from the Northeast and the
Pacific Coast. In 1963, President Kennedy stated that there should be an outstanding university in every major
region of the country (Page 1968). In a 1965 exchange with his Cabinet, President Johnson complained that
research funds were “still concentrated in too few institutions in too few areas of the country.” On the other
hand, the NSF director Leland J. Haworth defended the allocation of his agency research funds, arguing that the
government should not turn to institutions “which would first have to build up a capability.” The chief scientific
advisor to both President Kennedy and President Johnson, Donald F. Horning, stated that “the first criterion
for funding an R&D program by Government agencies is the excellence of the institution.” The Seaborg Report
itself warned against the allocation of research funds to institutions deemed as not qualified (Lomask 1976).

8



The NSF hosted an application round in each year from 1964 to 1968 (NSF 1977a). Univer-

sities were evaluated based on a proposal detailing their plans to use NSF funds and after an

on-site visit from the evaluation body, which consisted of both NSF staff and external scientists

and science administrators. The evaluation of universities’ proposals and the reports from on-

site visits contributed to a recommendation report submitted by the evaluation body to a panel

of experts advising the NSF and to the NSF leadership, which ultimately decided whether a

grant could be awarded (Drew 1975; NSF 1977a).

Table 1 lists the universities that received a Science Development Program grant. Of the

31 institutions, 21 are located in Southern or Midwestern states, including flagship universities

such as the University of Texas at Austin or the University of Florida, public ones such as the

University of Virginia or Michigan State University, and private ones such as Duke University

or Washington University in St. Louis. The first grant was awarded to the University of Oregon

in 1965, while the last one to the University of Pittsburgh in 1969.

Each institution received a grant supporting up to six departments, for a total amount typ-

ically between $4 and $6 million (equivalent to $40 and $60 million in 2024 USD) and lasting

for five years. Although matching funds were not formally required, receiving institutions were

expected to sustain the increased financial resources for each department after the program

ended (Drew 1975; NSF 1977a). The grants were allocated for hiring new faculty members, en-

larging PhD programs, acquiring new research equipment, and improving or expanding research

facilities (Drew 1975; NSF 1977b).

The Science Development Program grants became some of the biggest sources of university

research funding in the 1960s, especially for the physical sciences. The NSF estimated that

for a typical chemistry department of the period, a Science Development Program grant would

represent an increase of research resources of about 20% to 50% (NSF 1977a). These grants

were larger than similar contemporary institutional grants awarded by agencies such as the

Department of Defense (DoD) and the National Institutes of Health (NIH), larger than most

institutional grants awarded by the National Aeronautics and Space Administration (NASA),

and surpassed only by the biggest institutional grants from the Ford Foundation (NSF 1977a).4

4Nevertheless, it is important to note that the NSF, DoD, NASA, and NIH sponsored academic research
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In 1966, the NSF introduced two smaller subprograms extending institutional funding to

a broader set of universities: the Special Science Development Program and the Departmen-

tal Science Development Program. The first funded up to two departments at institutions

which applied to the Science Development Program, but were rejected because judged to lack

the strength to maintain a larger program, and awarded grants of approximately $1 million

(equivalent to roughly $9.6 million in 2024 USD) to 11 universities. The second was an even

more focused program, typically supporting only one department, and awarded grants averaging

$600,000 (equivalent to $5.8 million in 2024 USD) to 62 institutions (NSF 1977a).

Funding restrictions prevented the NSF to accept new applications after 1969, and the

program was officially terminated in 1971 within broader budgetary cuts introduced by the

Nixon Administration.

In the mid 1970s, the NSF performed two main evaluations of the program. The first was

carried out by the National Board of Graduate Education and involved mostly a qualitative

analysis based on interviews and on-site visits (Drew 1975). The second was based on reports

the NSF requested to each funded university’s president and faculty deans (NSF 1977b). Ac-

cording to these accounts, the Science Development Program enabled funded departments to

increase faculty hiring, to enlarge the size of PhD programs, to improve research facilities and

experimental equipment, to expand their libraries’ collections, and to increase the likelihood to

obtain future external funds due to departments’ improvement.

In summary, the Science Development Program substantially increased the research funds of

numerous universities across the United States, excluding top-ranked institutions—even though

historical evidence suggests that elite universities would have applied for and likely received

grants if they had been eligible.

through various means beyond institutional programs during the 1960s. Considering all funding sources, the
NSF was the third-largest supporter of university research in the mid-1960s, following the NIH and the DoD,
and ahead of the Atomic Energy Commission (AEC) and NASA (Geiger 1993).
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3. Data

3.1. Sources

My analysis is based on five main data sources: scientific publications, PhD dissertations, patent

documents, citations between patents, and citations from patents to scientific publications.

I obtain scientific publication data from the OpenAlex database (Priem et al. 2022), the

successor of the Microsoft Academic Graph database. I extract bibliographic information for

all articles published between 1960 and 1990 and listing at least one author affiliated with a

research university surveyed and ranked by Cartter (1966), roughly corresponding to institutions

ranked as “R1: Doctoral Universities” by the modern Carnegie Classification of Institutions of

Higher Education. For the same time period, I also extract publications from scientists affiliated

with private firms based in the U.S. The resulting dataset includes the authors’ full name and

affiliation, scientific field, and citations received, for 2,008,779 publications.5

I track PhD dissertations using the ProQuest Dissertations & Theses Global database, a

collection of dissertations published since 1861 and the official dissertations repository for the

Library of Congress. I focus on graduates from the group of research universities evaluated

by Cartter (1966), extracting all dissertations published between 1960 and 1990, including the

author’s full name, scientific field, and title of 619,862 dissertations.

I measure U.S. innovation activities using patent documents. Despite their recognized limi-

tations (“not all inventions are patentable, not all inventions are patented, and the inventions

that are patented differ greatly [...] in the magnitude of the inventive output associated with

them,” Griliches 1990, p. 1669), patents are a key measure of innovation in advanced economies

since at least the early twentieth century (Mansfield 1986; Cohen et al. 2000; Moser 2016).

For patents granted before 1975 (“historical” patents, Andrews 2021a), I combine data from

the Patstat database (inventor and assignee name), the PatentCity database (inventor and as-

signee location; Bergeaud and Verluise 2024), the USPTO historical masterfile (patents’ grant

date and technology class; Marco et al. 2015), and Google Patents (patents’ filing date). For

patents granted since 1975 (“modern” patents), I obtain the same information from the USPTO

PatentsView database (USPTO 2024). I focus on all patents filed between 1960 and 1990 and

5Appendix Table A1 lists the research universities surveyed by Cartter (1966) and included in my sample.
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listing at least one inventor with a U.S. address, obtaining a dataset of 1,102,861 patents.

Lastly, I track links between patents using citations extracted from the patent text by

Verluise et al. (2020) and I measure connections between patented technologies and knowledge

embodied in scientific articles using the database on patent citations to publications constructed

by Marx and Fuegi (2022).

3.2. Author and Inventor Disambiguation

OpenAlex assigns unique identifiers to the same author across different publications using a

disambiguation algorithm. Regarding inventors, only those listed on modern patents report

unique identifiers, which are assigned by the USPTO using a supervised classification algorithm

combined with hierarchical agglomerative clustering (Monath et al. 2021).6

I apply the same machine learning technique to disambiguate also inventors listed on his-

torical patents, assigning unique identifiers to all inventors filing a patent at the USPTO and

residing in the U.S. between 1920 and 2015. A detailed description of my algorithm can be

found in Appendix B. In summary, I first train a logistic classifier on 2 million disambiguated

inventor-patent instances from modern patents, followed by fine-tuning on a development set

of additional 100,000 disambiguated records. The features include the inventors’ name, resi-

dential location, co-inventors’ and assignees’ identity, and technology classes. Next, I use the

classifier’s predictions to create a distance matrix for each group of inventors sharing the same

last name and first name two initials. Finally, I apply hierarchical agglomerative clustering to

these matrices, assigning the same identifier to inventors whose distance scores fall within the

optimal threshold maximizing precision and recall determined during fine-tuning.7

I evaluate the performance of the algorithm in three steps. First, the optimal threshold

set during fine-tuning achieves precision and recall of approximately 0.99 and 0.95, respectively.

Second, focusing only on inventors from modern patents, my identifiers match the USPTO’s with

96% and 99.5% similarity, indicating a nearly identical disambiguation. Third, following Akcigit

et al. (2022), I search for the top 50 most prolific inventors in my dataset in a crowdsourced

6More information about OpenAlex’s disambiguation algorithm can be found at following link: https://

github.com/ourresearch/openalex-name-disambiguation/tree/main/V3 (last access: December 2024).
7This disambiguation strategy is similar to the method used by Akcigit et al. (2022), who disambiguated

inventors from historical patents using a training set of inventors from modern patents disambiguated by Li et al.
(2014).
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list of the most prolific inventors known, maintained on Wikipedia. I find 45 of these inventors

in the list and verify the identities of the remaining five through their biographical profiles on

company or university websites. Additionally, for inventors with careers fully covered in both

my dataset and Wikipedia, I observe minimal differences in their total patent stock.

3.3. Record Linkage: PhD graduates, Scientists, and Inventors

I link the authors of doctoral dissertations and of scientific publications to inventor records,

enabling me to study the contribution of PhD graduates and of academic scientists to patenting,

and to analyze collaborations on scientific projects between academic and industrial scientists. I

adopt the class of ABE algorithms (Abramitzky et al. 2012, 2014, 2021), building on their linkage

routine to leverage the information provided by doctoral dissertations, scientific publications,

and patents.

I link PhD graduates’ records from ProQuest to inventor records from USPTO patents based

on the following routine. First, I create a set of candidate links by matching PhD graduates

and inventor records on first name, last name, and middle name initials. Second, I keep only

records with a difference between the PhD graduation and first patent within a [−5;+30] years

interval. Third, I discard records where the difference between the PhD graduation and the last

patent is beyond 40 years. Lastly, I retain only unique PhD graduate-inventor pairs (that is,

I exclude PhD graduate records with multiple inventor candidates or multiple PhD graduates

linked to the same inventor). I link around 15% of PhD graduates to an inventor.8

I follow a similar procedure to link authors from scientific publications to inventors. First, I

create a set of candidate links by matching scientific authors and inventor records on first name,

last name, and middle name initials. Second, I keep only records with a difference between the

first publication and first patent within a [−5;+30] years interval. Third, I discard records where

the difference between the first publication and the last patent is beyond 40 years. Lastly, I

retain only unique author-inventor pairs. I link around 5% of scientific authors to an inventor.

8The lower limit of −5 years accounts for inventions that may have been patented during the PhD program.
The upper limit of +30 years is based on data from Kaltenberg et al. (2023), which show that most inventors file
their first patent by age 55.
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4. Empirical Strategy

The main empirical strategy of this paper is based on the exclusion of top-ranked universities

from the Science Development Program. Since the program aimed to expand the number

of research centers of excellence across the country, the NSF dismissed grant proposals from

institutions already considered elite. I exploit these excluded top-ranked universities and their

local economies as a comparison group in a difference-in-differences research design. Specifically,

I compare funded and excluded universities to examine university-level outcomes and compare

commuting zones hosting funded institutions versus those hosting excluded top-ranked ones to

study local innovation outcomes.9

Excluded top-ranked universities are a suitable comparison group for three main reasons.

First, their exclusion was based solely on their pre-existing elite status, not on any antici-

pated differences in future research trajectories compared to funded universities. Second, these

universities were excluded from the SDP selection process and were not evaluated alongside

institutions that ultimately received SDP funds, unlike universities that applied but were not

selected. Third, as detailed in Section 2, top-ranked institutions would have applied to the

program if allowed—as evidenced by inquiries from their presidents to the NSF—and would

likely have received SDP funds had their applications been considered.

An analogous rationale supports using commuting zones hosting excluded top-ranked uni-

versities as a comparison group for those hosting SDP-funded institutions. First, the selection

of universities for the SDP was based solely on evaluations of their scientific capabilities, not on

pre-existing trends or anticipated future trajectories of industrial R&D or other economic out-

comes within their commuting zones. Second, even if commuting zones’ economic trajectories

might have been correlated with the research performance of their universities, the exclusion

of top-ranked universities—and thus their commuting zones—from the SDP selection process

mitigates concerns about selection bias favoring regions with SDP-funded institutions.

Below, I detail how I identify the group of excluded top-ranked universities and I test

the validity of this research design by investigating the trends of SDP-funded and top-ranked

9Commuting zones are clusters of counties exhibiting strong commuting ties and approximate the local
economies hosting each university (Tolbert and Sizer 1996; Autor and Dorn 2013).
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universities and their commuting zones prior to the Science Development Program.

4.1. Identifying Top-Ranked Universities and Commuting Zones

While the exclusion of top-ranked universities was made public and communicated by the NSF

to those institutions’ administrators, a formal list with excluded universities was never com-

piled. As described in Section 2, the NSF excluded the top-ranked institutions based on their

perceived research excellence, a group generally referred to as the “top fifteen” or “top twenty”

universities in the country (President’s Science Advisory Committee 1960; Page 1968; Lomask

1976). According to Howard E. Page, Head of the NSF Office of Institutional Programs in the

1960s, “[n]o list of institutions disqualified because of their distinction was ever prepared. One

way of preparing such a list would be to take the twenty institutions presently receiving the

largest amount of federal funds for science” (Page 1968, p. 115).

I follow a similar data-guided procedure to identify top-ranked universities excluded from

the NSF Science Development Program. First, I identify the top-ranked universities based on a

measure of their perceived research excellence in the early 1960s. I rely on the evaluation of U.S.

research universities by discipline produced by Cartter (1966), based on an extensive survey of

senior and junior U.S. scholars administered in 1964, one year prior to the SDP introduction.

Using Cartter’s (1966) scores, I rank universities in the biological sciences, physical sciences,

and engineering (Appendix Table A6, Table A7, and Table A8). Then, I select all universities

ranked in the top twenty in at least one of those domains and categorized as “distinguished”

or “strong” across all three domains—the highest-rated categories by Cartter (1966) and the

only ones receiving a score. Second, I validate this group by comparing it with the top twenty

research universities by total federal research funds received in fiscal year 1964. I use two

rankings, one produced by the National Science Foundation (NSF 1967) and one from the U.S.

General Accounting Office (Comptroller General of the U.S. 1976).10,11

10Appendix Figure A1 lists the scientific disciplines ranked by Cartter (1966) grouped by domain. Appendix
Figure A2 provides examples of the rankings and scores found in Cartter (1966).

11Although the University of Chicago is not ranked in any engineering domain, I include it in the group of
top-ranked universities for two key reasons. First, it lacked an engineering school in the 1960s and therefore
could not be evaluated in that domain. Second, and more importantly, it was explicitly mentioned by Page
(1968) as an elite institution excluded from the SDP: “For example, a proposal to establish a doctoral program in
anthropology at the Massachusetts Institute of Technology or an engineering school at the University of Chicago
would not be entertained, on the grounds that these institutions could request assistance from other public and
private sources” (Page 1968, p. 115).
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Table 2 reports my results. In panels B and C, I list universities highly-ranked in natural

science and engineering disciplines, but not considered for my comparison group because funded

by either the Science Development Program or by one of its subprograms. Panel A shows the

18 top-ranked universities constituting my comparison group. All of them are part of the

top twenty institutions in terms of total federal research funds received in the 1964 based on

the NSF (1967) ranking, except three universities: Brown University, the California Institute

of Technology, and Princeton University. The latter is reported in the top twenty by the U.S.

General Accounting Office’s ranking; the California Institute of Technology is directly mentioned

as one of the excluded institutions from the SDP in Lomask (1976); Brown University is ranked

in the top fifteen in one discipline group by Cartter (1966).

Table 3 lists the commuting zones in my sample, distinguishing between those hosting SDP-

funded universities and those hosting excluded top-ranked universities. Most commuting zones

host only one institution, with the exceptions of the areas of Boston, Pittsburgh, and of Chapel

Hill-Durham-Raleigh. I do not consider the commuting zones of Los Angeles, Newark, and New

York City because they host both SDP-funded and top-ranked universities.

In both the analyses of university and commuting zone outcomes, I test the sensitivity of

my results to the exclusion of each top-ranked university and each commuting zones from the

sample.

4.2. Trends Prior to the Science Development Program

The validity of my difference-in-differences research design hinges on the assumption that, in

the absence of the Science Development Program, the outcomes of SDP-funded universities

and excluded top-ranked universities—as well as their respective commuting zones—would have

followed similar trajectories. Although this parallel trends assumption cannot be directly tested,

it appears reasonable if SDP-funded and excluded units do not exhibit differential trends prior

to the program’s introduction.

To assess the plausibility of this assumption for universities, I examine pre-SDP trends

by regressing each university outcome on an interaction between an indicator for SDP-funded

universities and year dummies from 1960 to 1964, using 1964 as the baseline year. I include
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year and university fixed effects, and cluster standard errors at the university level. I analyze

four outcomes within the natural sciences and engineering: the number of new scientists, the

total number of scientists, the number of PhD dissertations, and the number of publications.

Panel (a) of Figure 1 presents the results. For each dependent variable, the coefficients are

statistically insignificant, often estimated very close to zero, and exhibit flat trends.

I conduct an equivalent test for commuting zones. I regress each patenting outcome on an

interaction between an indicator for commuting zones hosting SDP-funded universities and year

dummies from 1960 to 1964, again using 1964 as the baseline year. I include year and commuting

zone fixed effects and cluster standard errors at the commuting zone level. I examine the number

of patents filed in each commuting zone and year for four categories: all patents, patents filed

by private firms, patents citing the scientific literature, and patents listing a PhD graduate

as an inventor. Panel (b) of Figure 1 presents the results. For each patenting outcome, the

estimated coefficients are close to zero and display a flat trend. The estimates for patents by

PhD graduates are less precise due to the relatively sparse nature of this outcome compared to

other patent counts.

I further inspect commuting zones trends prior to the Science Development Program using

information on total employment and the number of establishments between 1951 and 1964,

based on County Business Patterns data digitized by Eckert et al. (2022). Appendix Figure D1

shows that, both for employment and establishment, the coefficients are all statistically indis-

tinguishable from zero and display a flat trend.

Overall, these findings exclude differential trends between SDP-funded and top-ranked uni-

versities, as well as their commuting zones, prior to the initiation of the Science Development

Program. This evidence supports excluded universities and their commuting zones as an ap-

propriate comparison group in my difference-in-differences research design.

5. The Science Development Program and University Outcomes

To study the effects of the NSF Science Development Program on universities, I construct

a panel dataset of university outcomes observed yearly between 1960 and 1990. I adopt a

dynamic difference-in-differences approach, comparing universities which received SDP funds
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to the comparison group of top-ranked universities excluded from the program. Formally, I

estimate the following equation:

E[yut|Xut] = exp(α+
20∑

τ=−5
τ ̸=−1

βτ · Iτ × SDPu + ϕt + γu + ξu · t+ δXut) (1)

where yut denotes an outcome for university u in year t; ϕt are year fixed effects, accounting

for time-variant shocks common to all universities; γu are university fixed effects, capturing

time-invariant characteristics of each university; and ξu · t are university-specific time trends.

Xut is a vector of controls for other institutional funding programs varying by university and

year. I control for each of the major institutional funding programs contemporary to the SDP,

from NASA, the DoD, the NIH, and the Ford Foundation. For each funded university, I allocate

the total grant amount evenly across the years corresponding to the duration of the respective

program. To account for longer-term effects, I calculate a linearly decaying amount starting

from the first year after the program ends, extending it for an additional period equal to the

program’s original duration.12

SDPu is an indicator equal to 1 for universities which received an SDP grant, while Iτ is an

indicator equal to 1 in period τ . For each SDP-funded university, I set τ = 0 to the calendar

year when they received the SDP grant, which ranges between 1965 and 1969. For control

universities, I set τ = 0 in 1965. I consider all periods between τ ≥ −5 and τ ≤ 20, with τ = −1

as reference period. Since all my outcomes are count variables, I follow other econometric studies

of innovation and science (e.g., Henderson and Cockburn 1994, Blundell et al. 1995, Azoulay

et al. 2019a, Catalini et al. 2020) and produce pseudo-maximum-likelihood (PML) estimates

based on Hausman et al.’s (1984) Poisson fixed effects model. I cluster standard errors at the

university level.13

The main identifying assumption for this difference-in-differences model is the parallel evo-

12I obtain identical results by controlling only for the years when the program was running. Appendix Table A2,
Table A3, Table A4, and Table A5 list the universities funded by each program and specify the grant amounts
awarded.

13While the timing of SDP funding is staggered, my empirical specification is closer to a difference-in-differences
estimator with a unique treatment event, as my estimates are based solely on comparisons between SDP-funded
universities (i.e., the treated group) and top-ranked universities excluded from the program (i.e., the never-treated
group). This circumvents the challenges associated with “forbidden comparisons” between late- and early-treated
units examined by Goodman-Bacon (2021) and Borusyak et al. (2024).
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lution of outcomes for SDP-funded and top-ranked universities had the Science Development

Program not been introduced. Section 4.2 provides evidence in support of this assumption. I ad-

dress additional concerns about the selection of SDP-funded universities by including university-

specific time trends in my specification, capturing differential trends across universities over

time.

5.1. Results

Figure 2 reports the estimated βτ from Equation 1 for four dependent variables. In panel (a),

yut equals the number of new scientists working in a natural science or engineering field and

affiliated with university u and publishing in year t. I define new scientists as authors never

observed publishing with an affiliation to university u prior to year t. The estimates for τ < 0

are all close to zero and not statistically significant, displaying no particular trend. For τ > 0,

the coefficients progressively gain statistical significance increasing in size until the ninth year

after the SDP grants were awarded, after which they decrease, reaching values around zero for

the final years in the sample. In panel (b), I report estimates for the total number of scientists

working in the natural sciences and engineering, finding results highly comparable to panel (a).

The positive and statistically significant coefficients in the post-SDP period in panels (a)

and (b) correspond to an increase in natural science and engineering scientists approximately

between 5% and 38%. This range reflects the dynamic nature of the SDP effects, with smaller

effects observed immediately after the grants were awarded and larger ones occurring during the

mid-period of my study. For the average SDP-funded university in τ = −1, this corresponds to

approximately 7 to 53 additional scientists.14

In panel (c), the dependent variable equals the number of PhD dissertations in the natural

sciences or engineering published by university u in year t. The estimates are similar to those

in panel (a) and (b), albeit with slightly larger confidence intervals. The coefficients for the

period preceding an SDP grant award display a moderately flat trend and the estimates are

consistent with a positive effect of the program peaking around seven years after the grant and

14The estimated Poisson pseudo-maximum-likelihood coefficients can be interpreted as log-relative changes
in the outcome variable. To express these effects as percentage increases, I exponentiate the coefficients and
subtract one. For example, the estimate for period τ = 9 in panel (a) indicates an increase in new scientists by
approximately [exp(0.319)− 1] · 100 = 38%.
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progressively decreasing to zero for the last years in my sample. In panel (d), I set yut equal to

the number of publications in the natural sciences and engineering from university u and year

t, again finding results close to those in panels (a), (b), and (c).

In Figure 3, I present the results of several robustness checks, using scientific publications

as my dependent variable. In a panel (a), I re-estimate Equation 1 employing as a control

group universities which were co-located with top-ranked institutions. Being located in a region

already hosting elite institutions, those universities faced an indirect exclusion from the Science

Development Program, similar to top-ranked ones, and likely applied to SDP research grants.

The estimates for τ < 0 display an overall flat trend and are statistically insignificant. For

τ > 0, I find estimates comparable to the baseline, indicating a fast increase in publications

within the first ten years after an SDP grant award, progressively fading to zero during the final

years of my sample. I find comparable estimates when including all research universities in my

sample in the control group (panel (b)).

In panel (c), I report the results of a placebo test, using as a dependent variable the number of

publications in the social sciences and humanities, all fields not funded by Science Development

Program. Unless the award of an SDP grant triggered substantial re-allocation of pre-existing

resources within funded universities, the publication outcomes in these fields should have not

been influenced by the program. Reassuringly, the estimated coefficients are all close to zero,

displaying a flat trend across the entire time frame.

In panel (d), I report the estimates from a difference-in-differences model equivalent to

Equation 1, where I count publications in university, scientific domain, and year cells. This

enables me to account for scientific domain-by-year fixed effects, absorbing unobserved con-

founders varying by domain and year across universities. The estimates are almost identical to

my baseline results in terms of statistical significance, magnitude, and temporal dynamics.

In panel (e), I test the sensitivity of my results to individual SDP-funded universities and

to the definition of the comparison group of top-ranked universities, by re-estimating Equation

1 and iteratively excluding each university in my sample. The estimates are always comparable

to my baseline results, ruling out the possibility that any single university is the driver of my

results.
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Panel (f) reports the results of an additional permutation test. Following Abadie et al.

(2010), I randomly assign a placebo SDP-funded status and timing (between 1965 and 1969)

to all universities in my sample which were not funded by the program. I then estimate a two-

period differences-in-differences version of Equation 1, repeating this process 1,000 times. The

coefficient from my true specification can be considered significant if it is extreme relative to the

distribution of placebo estimates. The plot in panel (f) shows that the true estimate, denoted

by a vertical blue line, lies in the right tail of the placebo estimates’ distribution, suggesting

that it is unlikely driven by random chance.

I conclude this section by studying any change in the quality of scientific publications in the

natural sciences and engineering after the SDP grants were awarded. In Figure 4, I consider

two publication quality measures: the number of citation-weighted publications and the average

citations received by publications from university u and year t. Panel (a) shows estimates similar

to those reported in Figure 2 (panel (d)) for publications not weighted for quality, while panel

(b) shows estimates close to zero, jointly excluding any positive or negative change in SDP-

universities publications after the awards.

Taken together, the results in this section indicate that universities funded by the NSF

Science Development Program expanded their natural science and engineering faculties and

PhD programs, leading to an increase in publications within these fields. These effects lasted

approximately for the first fifteen years following the SDP grant awards.

6. The Science Development Program and Local Innovation

To investigate the effects of the Science Development Program on local innovation, I construct

a panel dataset of commuting zone-technology field pairs, observed yearly between 1960 and

1990. I adopt the technology field categorization of Hall et al. (2001), which groups USPTO

technology classes into 37 broader fields.15 I employ a dynamic difference-in-differences spec-

ification, comparing commuting zone-technology field pairs hosting a university that received

SDP funds to the comparison group of pairs hosting top-ranked universities excluded from the

15Hall et al.’s (2001) categorization is relatively narrow. For example, the broader category of electrical and
electronic engineering includes the following fields: electrical devices; electrical lightning; measuring & testing;
nuclear & X-rays; power systems; semiconductor devices; and miscellaneous-elec.
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program. Formally, I estimate the following equation:

E[yict|Xict] = exp(α+

20∑
τ=−5
τ ̸=−1

βτ · Iτ × SDPc + ϕt + γic + λit + δXct) (2)

where yict is an outcome for technology domain i, commuting zone c, and year t; ϕt are year

fixed effects, accounting for time-variant shocks common to all commuting zone-technology

field pairs; γic are commuting zone-by-technology field fixed effects, capturing time-invariant

characteristics of each commuting zone-technology field pair; λit are technology field-by-year

fixed effects, absorbing time-varying shocks specific to each technology field.

Xct is a vector of controls for R&D funding programs varying by commuting zone and year. I

control for each of the major university funding programs contemporary to the SDP, introduced

by NASA, the DoD, the NIH, and the Ford Foundation, with the same variables defined for

Equation 1.

SDPc is an indicator equal to 1 for commuting zones hosting a university which received an

SDP award, while Iτ is an indicator equal to 1 in period τ . For each commuting zone hosting

a SDP-funded university, I set τ = 0 to the calendar year when the SDP grant was received,

while I set τ = 0 in 1965 for commuting zones in the comparison group. I consider all periods

between τ ≥ −5 and τ ≤ 20, with τ = −1 as reference period. I still rely on Hausman et al.’s

(1984) Poisson fixed effects model due to the count nature of most of my dependent variables.

I cluster standard errors at the commuting zone level.

Akin to Equation 1, the main identifying assumption for this specification is the parallel

evolution of outcomes for commuting zones where SDP-funded universities were located and

for those hosting top-ranked universities, had the Science Development Program not been in-

troduced. The absence of differential trends between the two commuting zone groups prior to

the Science Development Program across patenting and other economic outcomes reported in

section 4.2 provides evidence in support of this assumption.

6.1. Main Results

Figure 5 shows the estimated βτ from Equation 2, where the dependent variable equals the num-

ber of patents filed in technology field i, commuting zone c, and year t. For the period preceding
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the award of SDP grants, all estimated coefficients are close to zero, statistically insignificant,

and display a flat trend. The coefficients remain statistically insignificant for the first four

years after the SPD grants awards, progressively increasing and gaining statistical significance,

displaying similar point estimates until the 14th year post-SDP. For the remaining years, the

coefficients remain positive, although they slightly decrease and lose statistical significance.

These results indicate that commuting zones hosting universities which received an SDP

grant increased their patenting output relative to the comparison group after the higher edu-

cation institutions received the grants. The effect appears after around four years and lasts for

the following ten years. The positive and statistically significant coefficients throughout that

period indicate that patenting in SDP-funded commuting zone increased by 18% to 32% on

average. For the mean commuting zone-technology field pair hosting SDP-funded universities,

this amounts to an increase of 1.3 to 2.3 additional patents per year.16

I test the robustness of this baseline finding in several ways. First, I control for additional

potential confounding factors varying by commuting zone and year. The period under exam-

ination witnessed substantial investments by the U.S. federal government in industrial R&D,

starting during WWII and continuing throughout the Cold War, with salient shocks such as

the Soviet Union’s launch of Sputnik (Mowery and Rosenberg 1991; Geiger 1997; Mowery 2010;

Kantor and Whalley 2023; Gross and Sampat 2023). A legitimate concern is that the estimates

in Figure 5 may be biased by federal funding to industrial R&D flowing into commuting zones

when SDP grants were awarded.

I address this concern by re-estimating Equation 2 and adding as a further control the share

of patents funded by the Department of Defense, the Department of Energy, the Department of

Health and Human Services, and NASA in each technology field, commuting zone, and year cell.

I leverage newly-released data by Gross and Sampat (2024) on the universe of patents funded by

government agencies to construct a measure of federal funding to industrial R&D akin to that

employed by Gross and Sampat (2023). Conditional on patenting, the average proportion of

federally-funded patents in each technology field, commuting zone, and year cell in my sample

16I also estimate a two-period difference-in-differences specification, substituting the set of Iτ in Equation 2
with a single indicator Postτ , equal to 1 from period τ = 0 onwards. The estimate is reported in column 1 of
Table 4 and indicates a patenting increase of about 13% following the SDP awards.
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is 6%, resulting from a skewed distribution with over two thirds of those observations not linked

to any federal funding, and cells in the top quintile displaying proportions over 20% (Appendix

Figure C1).17

Panel (a) of Figure 6 shows that the baseline results are virtually unchanged with the

addition of this control. In panel (b), I re-estimate Equation 2 and directly exclude federally-

funded patents from my dependent variable. This constitutes a rather restrictive robustness

check, as any innovation effect of the Science Development Program may have interacted with

government-sponsored industrial research. I still obtain estimates very similar to my baseline

results, excluding the effect of federal funding to private-sector R&D as a confounding driver of

the estimates shown in Figure 5.

Second, I introduce commuting zone-specific time trends in my baseline specification, con-

trolling for unobserved time-varying factors unique to each commuting zone and evolving sys-

tematically over time. I aim to further address the concern that commuting zones where SDP-

funded universities were located and those hosting universities excluded from the program may

have already been on different patenting trajectories, regardless of SDP funding. Panel (c) of

Figure 6 shows comparable estimates to the baseline, still indicating a positive effect of the SDP

on local patenting. I detect two main differences. First, the positive and statistically coefficients

for the post-SDP period are slightly smaller than the baseline ones. Second, coefficients for the

last years in the sample are estimated close to zero.

My third robustness check involves the construction of a control group with Mahalanobis

matching. For each commuting zone hosting SDP-funded universities, I select a control unit

which minimizes the Mahalanobis distance between a set of features observed prior to SDP

funding. As potential controls I consider all commuting zones hosting a research university

not funded by the SDP. I adopt the following matching features: average patenting between

1960-1964; total employment, employment shares by industry (1-digit SIC codes), and total

establishments, all in 1964 (County Business Patterns historical data digitized by Eckert et al.

17Gross and Sampat (2024) show that the DoE, the HHS, NASA, and in particular the DoD, accounted for
almost all federally-funded patents between 1920 and 2015. While it would be preferable to control for federal
funding to R&D using the actual funds rather than based on patenting output, to the best of my knowledge,
granular data at the commuting zone-year level and covering the entire United States during this historical period
is not readily available.
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2022); and total population in 1960. I find a matched unit for 17 commuting zones out of the

total of 23 hosting an SDP-funded university.

Panel (d) of Figure 6 reports βτ estimates from Equation 2 using the Mahalanobis-matched

control group. The results are still similar to the baseline specification, excluding differential

trends in the period prior to SDP awards and indicating an increase in local patenting for

commuting zones hosting SDP-funded universities. The positive effect starts three years after

SDP grants were awarded and lasts for the next ten years, with three positive coefficients in

the post-SDP period imprecisely estimated compared to baseline estimates.

Lastly, similar to section 5.1, I conduct two permutation tests. First, I re-estimate Equation

2 iteratively excluding each commuting zone in the sample. Panel (e) of Figure 6 reports results

broadly similar to the baseline, indicating that no single commuting zone—whether hosting

an SDP-funded university or an institution excluded from the program—is driving the results.

Second, I randomly assign a placebo SDP-funded status and timing to all commuting zones

not hosting any true funded university, estimating a two-period difference-in-differences version

of my baseline specification 1,000 times. Panel (f) in Figure 6 shows that the true estimate

(vertical blue line) lies in the right tail of the placebo estimates’ distribution, ruling out the

possibility of that it is driven by random chance.

Taken together, the results presented in this section support a causal interpretation of the

positive effect of the Science Development Program on local patenting. In the next sections, I

first explore how the patenting effects vary across assignees, technology fields, and commuting

zones. I then test effects based on a measure of exposure to local universities’ research, and,

lastly, I investigate the mechanisms underlying the patenting increase.

6.2. Heterogeneity

Assignee type – I begin by investigating the type of assignee driving the patenting effect.

I differentiate among three categories: private firms, universities, and independent inventors,

that is, inventors patenting in their own name and not affiliated with any particular institution.

The majority of patents in my sample are filed by private firms, accounting for approximately

84% of filings in each technology field, commuting zone, and year cell, on average, while patents
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from independent inventors account for an average of 15% of filings. University patents are

rare, constituting less than 2% of filings in each cell, on average.18

Panel (a) of Figure 7 reports estimates where I restrict the dependent variable to patents filed

by private firms. The estimated coefficients’ size, statistical significance, and temporal evolution

are almost identical to the my baseline estimates. In panel (b), the dependent variable includes

only patents filed by independent inventors. I detect few positive and statistically significant

coefficients between the fifth and tenth year following the SDP introduction, although the

point estimate is smaller than panel (a) and the rest of other coefficients are estimated close

to zero and mostly statistically insignificant. In panel (c), the dependent variable includes

only university patents. Most estimated coefficients are statistically indistinguishable from

zero, with few positive and statistically significant coefficients in the final years of the sample.

These results, combined with the relatively small proportion of patents filed from independent

inventors and (especially) universities, suggest that the patenting increase following the SDP

introduction was mainly driven by technologies developed by private firms.

Next, I distinguish between patents from incumbent assignees—that is, those observed

patenting prior to the introduction of the Science Development Program—and patents from

new assignees, those filing their first patent in a given year t. The second group includes

both organizations established after the SDP introduction and pre-existing entities which never

patented. In panel (d) of Figure 7, the dependent variable includes only patents from incum-

bent assignees. The estimates are similar to those considering all patents, with slightly larger

coefficients, remaining positive and statistically significant for the entire post-SDP period. In

panel (e), I focus only on new assignees’ patents. I still estimate positive coefficients for the

majority of years in the period following the SDP grants, although most of them are statisti-

cally indistinguishable from zero. In Appendix Figure D2, I further distinguish between local

incumbent assignees and incumbents from a different location, which never patented in the focal

18I define patents from private firms as those from the patent assignee name string contains the following
keywords: “co”, “co.”, “company”, “corp”, “corporation”, “industries”, “limited”, “incorporated”, “inc”, “ltd”,
“llc”, “plc”. Similarly, I identify university patents by looking for terms in the assignee name strings such as
“university”, “institute of technology”, “regents of the”, or university acronymis such as “mit”, “caltech”, “uc
berkeley”, “ucla”, “nyu”, “ut austin”, “umass”, or “ucsf”. Lastly, I define patents filed by independent inventors
as those filed by single inventors and where the name of the inventor and the assignee coincide and where the
assignee string does not contain any of the previous keywords for private firms or university patents.
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commuting zone prior to the SDP introduction. The results indicate that the patenting increase

effect is driven entirely by local incumbent assignees.

Technology category – In Figure 8, I estimate Equation 2 for each of four broad areas group-

ing the 37 technology fields in my dataset. I find estimates highly comparable to the baseline

for patents in the electrical and electronics engineering category. I find shorter-lived positive ef-

fects for chemical and pharmaceutical technologies and, although smaller in magnitude, for the

mechanical engineering category. I do not find any statistically significant effect for technologies

in the residual “Others” category.

Two observations are due. First, there is a connection between the academic disciplines

funded by the Science Development Program (physics and chemistry) and the technology cat-

egories exhibiting more sustained and substantial patenting effects (electrical and electronic

engineering and chemicals and pharmaceuticals). Second, the absence of significant effects in

the “Others” category is reassuring, as these fields are less likely to benefit from university

spillovers and advancements in scientific knowledge, at least in the short to medium term.

Commuting zone characteristics – I conclude this section by studying how the effects of the

SDP varied across commuting zones with different pre-existing industrial R&D characteristics.

First, I focus on the size of local R&D-intensive sectors by calculating the number of patents

per capita filed during the period immediately preceding the SDP introduction (1960-1964). I

then estimate Equation 2 separately for commuting zones with either above-median or below-

median patenting prior to the SDP-introduction. Panel (a) in Figure 9 reports the estimation

results. Commuting zones in the above-median group display estimates similar to the baseline,

while those in the below-median group report estimates mostly close to zero and statistically

indistinguishable from zero. I obtain comparable results when I consider also the quality of pre-

SDP patenting, by categorizing commuting zones based on their total citation-weighted patents

per capita filed between 1960 and 1964 (Panel (b)).

Next, I consider a measure of industrial R&D’s capacity to productively use scientific knowl-

edge for the development of new technologies. Specifically, I calculate the share of each com-

muting zone’s total pre-SDP patents that cite the scientific literature. Panel (c) in Figure 9
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shows that the increase in patenting observed after the SDP grants were awarded is entirely

concentrated in commuting zones with an above-median share of pre-SDP patents citing the

scientific literature.19

Overall, the results in this section show that the increase in patenting was driven by private

firms already located in the commuting zones hosting SDP-funded universities and in areas

with both high pre-existing levels of industrial R&D and high absorptive capacity for scientific

knowledge. In other words, the increased funding of the Science Development Program appears

to have influenced innovation outcomes in the private economy only in locations able to absorb

any spillover from higher education institutions, and it did not foster the creation of new orga-

nizations developing and patenting new technologies, nor did it attract any of them from other

areas of the country.

6.3. Effects by Exposure to Local Universities’ Research

I deepen my investigation by studying how the patenting effect estimated in Section 6.1 varies

across technology fields, based on their exposure to local universities’ research prior to the

SDP introduction. To do so, I measure the intellectual proximity between patenting in a given

technology field-commuting zone pair ic and the research published by the university located

in the same commuting zone c. I construct a measure akin to that developed and validated by

Bergeaud et al. (2022) and Bergeaud and Guillouzouic (2024) by calculating:

Exposureic =
∑
j

sicj · scj (3)

where sicj is the share of citations from patents in technology field-commuting zone pair ic to

scientific papers published in journal j, between 1960 and 1964, and scj is the share of scientific

papers from the university hosted in commuting zone c published in journal j, also between

1960 and 1964.20,21

19Appendix Figure Figure C2 displays the kernel density distributions of each pre-SDP characteristic. Ap-
pendix Table C1 reports weak correlations between commuting zones’ pre-SDP patents per capita and the share
of patents citing the scientific literature, indicating that these two measures capture different characteristics of
the local economies in my sample.

20Most commuting zones host only one research university. For those hosting more than one, I consider the
joint research output of all research universities in the commuting zone (e.g., the commuting zone of Pittsburgh
hosting both Carnegie Mellon University and the University of Pittsburgh).

21Virtually all citations to scientific articles used to construct sicj are found within the main text of the
patents. Although the USPTO introduced citations to prior art on patent documents’ front page in 1947, front-
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In practice, Exposureic measures the overlap between the scientific journals where a given

university published and where R&D-intensive firms in the local technology field source their

knowledge. The measure exhibits substantial variation across technology field-commuting zone

pairs and, crucially, between the same technology fields across different locations. It displays a

skewed distribution, with over 60% of pairs with Exposureic equal to 0, a maximum value of

0.093, and mean equal to 0.002 (Appendix Figure C3).

I introduce this exposure measure in my analysis by estimating Equation 2 and adding

Exposureic as a third term to the interaction Iτ × SDPc. Figure 10 reports the estimated βτ

for the triple interaction Iτ×SDPc×Exposureic. In the period prior to the SDP introduction all

coefficients are estimated close to zero and display an overall flat trend. The coefficients become

positive and statistically significant starting in the second year after the SDP introduction and

remain positive and—except few coefficients—statistically significant for the next twelve years.

The estimates for the final years in the sample are all estimated close to zero and not statistically

significant.

This result indicates that the positive effect of the SDP introduction on local patenting was

larger in technology fields with higher exposure to local universities’ research. In particular

for a one-standard-deviation increase in Exposureic, the positive and statistically significant

coefficients estimated for the post-SDP period imply a patenting increase between 4.1% and

8.2%.

In order to verify that this result is not driven by differential patenting trajectories between

higher- and lower-exposed technology field-commuting zone pairs, I re-estimate this specification

introducing technology field-commuting zone-specific time trends. The estimates are reported

in Appendix Figure D3 and show results comparable to Figure 10.

6.4. Mechanisms

Based on the analysis of university outcomes presented in Section 5, there are three potential

(non-mutually exclusive) mechanisms underlying the increase in local patenting after the Sci-

ence Development Program grants were awarded. First, the increased availability of scientific

human capital in local economies. New PhD graduates remaining in the labor market hosting

page references to the scientific literature remained almost non-existent until the early 1970s.

29



their university upon graduation, taking positions in industrial R&D, may have directly con-

tributed to patenting and also diffused scientific knowledge useful for the development of new

technologies. Second, larger departments at local universities may have increased the opportu-

nity of local firms to establish formal collaborations with local academic scientists. This may

have resulted on joint projects giving rise to patents (and also scientific publications) co-filed by

academic and industrial scientists, all the while increasing the diffusion of scientific knowledge

to industrial R&D. Third, funded universities’ increased research capacity may have increased

scientific knowledge spillovers from universities to private firms through informal channels.

Since all mechanisms may involve the diffusion of scientific knowledge, I start this section

by investigating whether the increase in patenting is accompanied by a rise in local R&D’s

reliance on the scientific literature. Following Ahmadpoor and Jones (2017), I construct a

citation network connecting patents to scientific publications and compute the shortest path

from each patent to any scientific publication (distance metric D). I categorize patents into

three groups based on their distance D. The first group comprises patents that directly cite

a scientific publication, with D = 1. The second group includes patents indirectly linked to a

scientific publication through citations to other patents, with D ∈ {2, 3, 4}. The third group

consists of patents that are more remotely connected to the scientific literature via citations to

other patents or are fully unconnected from it (D ≥ 5).22

In Figure 11, panel (a), I re-estimate Equation 2 by considering only patents that directly cite

a scientific publication (D = 1). The estimates still show no evidence of pre-trends and indicate

a sharp surge in patents directly relying on science in commuting zones hosting SDP-funded

universities, indicating a quantitatively larger effects than my estimates for the full sample

(Figure 5). In panel (b), I focus only on patents indirectly linked to the scientific literature

(D ∈ {2, 3, 4}). The coefficients for the pre-SDP period show no distinct trend, while those for

22Ahmadpoor and Jones (2017) construct a citation network using only front-page citations, whether between
patents or between patents and scientific articles. I use only in-text citations between patents (data from Verluise
et al. 2020) and both in-text and front-page citations between patents and scientific articles (data from Marx and
Fuegi 2022). Since in-text citations among patents are rarer than front-page ones (Verluise et al. 2020), the groups
of patents indirectly connected to the scientific literature is smaller than in Ahmadpoor and Jones (2017). Marx
and Fuegi (2022) replicate Ahmadpoor and Jones’s (2017) analysis using both in-text and front-page citations
to the scientific literature, finding overall comparable results, with a higher proportion of patents at D = 1. I
obtain almost identical results to those presented below when I use only in-text citations to scientific publications
(Appendix Figure D4 and Table D1).
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the post-SDP period progressively become positive and increase in magnitude, although most

estimates are imprecise, with p-values ranging from 0.05 to 0.1 for periods 5 to 14. In panel (c),

I consider only patents remotely connected or unconnected to the scientific literature (D ≥ 5),

still finding a patenting increase after the SDP awards, although the effect is quantitatively

smaller and shorter-lived than the estimates for the full sample and, especially, for patents at

D = 1.

Table 4 (columns 4 to 6), presents similar findings from an equivalent two-period difference-

in-difference estimation. Panel A reports results for the entire study period, while panel B

restricts the analysis to the first 14 years post-SDP awards, where most patenting effects are

concentrated. The size of the coefficients is similar across panels A and B, although those in

panel A are often less precisely estimated. Specifically, in panel A, columns 4 and 5 indicate that

patents at D = 1 and at D ∈ {2, 3, 4} increased by 16% and 35%, respectively, in commuting

zones hosting SDP-funded universities following the SDP awards. The estimate for patents at

D ≥ 5 in column 6 is also positive but smaller and not statistically significant.

In columns 7 to 9, I focus on the share of patents in each group relative to total patenting in

each commuting zone-technology field-year cell, estimating a two-period difference-in-differences

specification equivalent to Equation 2 by OLS. The estimates indicate an increase in the propor-

tion of patented inventions relying on the scientific literature, mostly driven by patents directly

citing a scientific publication. In particular, the coefficient in column 7 (panel A) implies that

the proportion of patents at D = 1 increased by 1.3 percentage points following the SDP awards,

an economically significant effect representing approximately 6.5% of the dependent variable’s

mean.

These results indicate that the observed increase in patenting after the SDP introduction

was primarily driven by a growth in patents directly reliant on science or closely connected to

the scientific publication-patent frontier. The rise in the proportion of patents closely linked to

the scientific literature suggests that commuting zones hosting SDP-funded universities intensi-

fied their reliance on scientific research for their inventions following the SDP awards. Besides

highlighting the diffusion of scientific knowledge from universities to private firms as a mecha-

nism for the post-SDP increase in local patenting, these results provide additional evidence on
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the linkage between universities and innovation outcomes in the local economies hosting them

after the SDP grants were awarded.

I continue my investigation by focusing on the role of scientific human capital. I estimate

a two-period difference-in-differences specification based on Equation 2 restricting yict to the

number of patents co-filed by a PhD graduate from a university located in commuting zone c.

Column 1 in Table 5 reports a positive and statistically significant coefficient, similar in size

across panels A and B (full and restricted post-SDP period), implying an increase in the number

of patents from local PhD graduates of about 30% for commuting zones hosting SDP-funded

universities. In column 2, I focus only on patents not listing any local PhD graduate, still

finding positive estimates although smaller in size and less precisely estimated. These results

suggest that the direct contribution of local PhD graduates to technology development was one

of the mechanisms driving the patenting increase observed after the SDP introduction.

Two points are important for interpreting this result. First, the average number of patents

co-filed by local PhD graduates is relatively small compared to all patents in a commuting

zone-technology field-year cell, implying that the direct contribution of local PhD graduates

cannot fully explain the overall patenting increase post-SDP awards. Second, my measure of

PhD graduates’ patenting does not capture all patents filed by this group, as it relies on a non-

deterministic linkage procedure between inventors and PhD dissertations’ authors, matching

only a fraction of the entire population of interest. Consequently, while still remaining small

relative to the full set, the true proportion of patents co-filed by local PhD graduates is likely

higher than measured.23

Next, I test the whether direct collaborations between academic and industrial scientists

may also have contributed to the post-SDP patenting increase. Column 3 in Table 5 reports

two-period difference-in-differences estimates where yict equals the number of patents co-filed

by an academic scientist affiliated with a university located in commuting zone c. The estimates

are statistically indistinguishable from zero, and the lower number of observations contributing

23The type of linking algorithm I adopted typically matches between 25% and 30% of candidate links
(Abramitzky et al. 2021). Due to the absence of a gold-standard dataset for this specific inventor demographic, I
cannot assess the exact match rate for patenting PhD graduates. Based on linkage rates from similar algorithms,
the average number of patents co-filed by local PhD graduates in my sample could be three to four times higher
than observed.
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to the estimates relative to columns 1 and 2 suggests that academic-industry co-patenting events

are relatively rare in my sample. In column 4, the dependent variable is the number of scientific

articles co-published by academic scientists and industrial inventors co-located in commuting

zone c. The coefficient is statistically insignificant, and the small number of such publications

in my sample further excludes direct collaborations between academic and industrial scientists

as a mechanism behind the patenting increase.

Taken together, these results indicate the diffusion of scientific knowledge from universities to

private sector R&D and the increased availability of scientific human capital as the mechanisms

underlying the patenting increase observed after the SDP introduction. While my estimates

rule out any influence of direct university-industry collaboration, they do not exclude informal

channels connecting the two. The increase in patents not involving local PhD graduates may

reflect harder-to-measure knowledge diffusion mechanisms, such as more frequent local scientific

conferences open to industrial scientists or overall higher chances of contact between scientists

working for private firms and a larger number of their academic peers.

7. Conclusions

This paper studies the effects of the NSF Science Development Program on universities and on

local innovation. Leveraging excluded elite universities from the program as a control group, I

show that the large institutional grants awarded by the Science Development Program enabled

funded universities to enlarge their departments and PhD programs, and to increase their

publications. I then show that such an increase in universities’ research capacity positively

influenced innovation in their local economies. My estimates indicate a sizeable increase in

patenting, mostly due to incumbent private firms. This effect is driven by commuting zones with

established R&D-intensive sectors and is larger in technology fields with high exposure to local

universities’ research. I provide evidence indicating that the diffusion of scientific knowledge

from universities to industrial R&D and the increased availability of scientific human capital

are the two main mechanisms behind the patenting increase.

These findings provide new evidence on the role of universities in their local economies and,

more broadly, the effects of public R&D funding on innovation (Bryan and Williams 2021). Prior
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research has highlighted the positive effects of establishing new higher education institutions

on innovation and economic development (Dittmar and Meisenzahl 2022; Andrews 2023). It

has also shown a positive link between funding basic research and innovation via principal

investigator programs or initiatives targeting individual laboratories (Azoulay et al. 2019b;

Bergeaud et al. 2022). This study demonstrates that increasing the research capacity of already-

established universities can generate significant positive spillovers to technology development in

the private sector.

The fact that the increase in patenting is mostly due to incumbent firms in locations with

high pre-existing levels of R&D and stronger reliance on scientific knowledge for technology

development underscores the critical role of the private sector’s absorptive capacity (Cohen

and Levinthal 1989, 1990) in capturing the spillovers of public funding to universities. This

emphasizes the challenges and complexities faced by interventions aimed at stimulating private

sector R&D and entrepreneurship (Lerner 2013).

There are two main areas not examined by this paper, which I intend to explore in future

research. First, my analysis focuses only on the effects of the Science Development Program on

local economies. It is possible that the increase in PhD graduates and scientific publications in-

fluenced science and innovation outcomes in the broader national economy, beyond the locations

hosting funded universities. Second, although I examine the effects of the SDP over a relatively

long horizon, some of its effects may require an even longer time frame to become evident. This

may include scientific advancements that enable the development of new technologies several

decades after their initial discovery, or the contributions of scientists—whose graduate studies

were supported by the Science Development Program—to the training of new generations of

researchers.
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Figures

Figure 1: University and Commuting Zone Trends Prior to the Science Development Program
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Notes: Panel (a) reports the coefficients from regressions where a university outcome in the natural sciences and
engineering is regressed on year dummies interacted with an indicator equal to 1 for universities funded by the SDP
and equal to 0 for top-ranked universities. All regressions include year and university fixed effects and standard
errors are clustered at the university level. Panel (b) reports the coefficients from regressions where a commuting
zone patenting outcome is regressed on year dummies interacted with an indicator equal to 1 for commuting
zones hosting an SDP-funded university and equal to 0 for those hosting a top-ranked university. All regressions
include year and commuting zones fixed effects and standard errors are clustered at the commuting zone level.
For all regressions, the baseline year is 1964. Vertical bars represent 95% confidence intervals. Estimations by
Poisson pseudo-maximum likelihood.

43



Figure 2: The NSF Science Development Program and University Outcomes
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Notes: In panel (a) the dependent variable is the number of new scientists publishing in the natural sciences
and engineering affiliated university u in year t, defined as those who never published for university u prior to
year t. In panel (b) the dependent variable is the number of all scientists publishing in the natural sciences
and engineering affiliated to university u in year t. In panel (c) the dependent variable is the number of new
PhD dissertations in the natural sciences and engineering published by university u in year t. In panel (d) the
dependent variable is the number of publications in the natural sciences and engineering from university u in year
t. The baseline period is τ = −1. Standard errors are clustered at the university level. Vertical bars represent
95% confidence intervals. Estimations by Poisson pseudo-maximum likelihood.
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Figure 3: The NSF Science Development Program and University Outcomes: Robustness Checks

-.5

-.25

0

.25

.5

-5 0 5 10 15 20
Years relative to SDP funding

(a) Universities co-located with top-ranked
institutions as control group

-.5

-.25

0

.25

.5

-5 0 5 10 15 20
Years relative to SDP funding

(b) All research universities in the
sample as control group

-.5

-.25

0

.25

.5

-5 0 5 10 15 20
Years relative to SDP funding

(c) Publications in the Social Sciences and
Humanities

-.5

-.25

0

.25

.5

-5 0 5 10 15 20
Years relative to SDP funding

(d) University × scientific domain specification
(with domain-by-year fixed effects)

-.5

-.25

0

.25

.5

-5 0 5 10 15 20
Years relative to SDP funding

(e) Iteratively exclude universities

0
2

4
6

8
10

Fr
eq

ue
nc

y

-.2 -.1 0 .1 .2
Placebo coefficients

(f) Random SDP funding assignment

Notes: In all panels, except (c) and (d) the dependent variable is the number of publications in the natural
sciences and engineering from university u in year t. In panel (c) the dependent variable is the number of
publications in the social sciences and humanities (i.e., Economics, History, Philosophy, Political Science, and
Sociology) from university u in year t. In panel (d) the dependent variable is the number of publications for
university u in a natural science or engineering field d in year t. The regressions includes year and university fixed
effects, along with controls for other institutional funding programs that vary by commuting zone and year. Panel
(d) includes also scientific domain-by-year fixed effects. Standard errors are clustered at the university level. In
panels (a) to (e) the baseline period is τ = −1 and the vertical bars represent 95% confidence intervals (except in
panel (e), where they are denoted by dashed black lines). Panel (f) reports the distribution of coefficients from
1,000 permutation tests, where I estimate a two-period difference-in-differences randomly assigning a placebo
SDP-funded status and timing (between 1965 and 1969) to all research universities in my sample not funded by
the SDP program. The coefficient from my true estimate is denoted by a vertical blue line. All estimations by
Poisson pseudo-maximum likelihood.
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Figure 4: The NSF Science Development Program and University Outcomes: Publications’ Quality
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(a) Citation-weighted publications

-1

-.5

0

.5

1

-5 0 5 10 15 20
Years relative to SDP funding

(b) Average citations

Notes: In panels (a) the dependent variable is the number of citation-weighted STEM publications from university
u in year t. In panel (b) the dependent variable is the average number of citations to STEM publications from
university u in year t. The baseline period is τ = −1. Standard errors are clustered at the university level.
Vertical bars represent 95% confidence intervals. Estimations by Poisson pseudo-maximum likelihood.
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Figure 5: The NSF Science Development Program and Local Patenting

-.5

-.25

0

.25

.5

-5 0 5 10 15 20
Years relative to SDP funding

Notes: The dependent variable is the number of patents filed in technology field i, commuting zone c, and year t.
The regression includes fixed effects for year, commuting zone-by-technology field, and technology field-by-year,
along with controls for other institutional funding programs that vary by commuting zone and year. The baseline
period is τ = −1. Standard errors are clustered at the commuting zone level. The vertical bars represent 95%
confidence intervals. Estimations by Poisson pseudo-maximum likelihood.
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Figure 6: The NSF Science Development Program and Local Patenting: Robustness Checks
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Notes: In all panels, the dependent variable is the number of patents filed in technology field i, commuting zone
c, and year t. The regressions includes fixed effects for year, commuting zone-by-technology field, and technology
field-by-year, along with controls for other institutional funding programs that vary by commuting zone and year.
Standard errors are clustered at the commuting zone level. In panels (a) to (e) the baseline period is τ = −1
and the vertical bars represent 95% confidence intervals (except in panel (e), where they are denoted by dashed
black lines). Panel (f) reports the distribution of coefficients from 1,000 permutation tests, where I estimate a
two-period difference-in-differences randomly assigning a placebo SDP-funded status and timing (between 1965
and 1969) to all commuting zones not hosting any true funded university. The coefficient from my true estimate
is denoted by a vertical blue line. All estimations by Poisson pseudo-maximum likelihood.
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Figure 7: The NSF Science Development Program and Local Patenting: Effects by Assignee Type
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Notes: The dependent variable is the number of patents filed in technology field i, commuting zone c, and year t.
The regression includes fixed effects for year, commuting zone-by-technology field, and technology field-by-year,
along with controls for other institutional funding programs that vary by commuting zone and year. The baseline
period is τ = −1. Standard errors are clustered at the commuting zone level. The vertical bars represent 95%
confidence intervals. Estimations by Poisson pseudo-maximum likelihood.
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Figure 8: The NSF Science Development Program and Local Patenting: Effects by Technology
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Notes: The dependent variable is the number of patents filed in technology field i, commuting zone c, and year t.
The regression includes fixed effects for year, commuting zone-by-technology field, and technology field-by-year,
along with controls for other institutional funding programs that vary by commuting zone and year. The baseline
period is τ = −1. Standard errors are clustered at the commuting zone level. The vertical bars represent 95%
confidence intervals. Estimations by Poisson pseudo-maximum likelihood.
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Figure 9: The NSF Science Development Program and Local Patenting: Effects by Commuting Zone
Characteristics
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Notes: The dependent variable is the number of patents filed in technology field i, commuting zone c, and
year t. All regressions includes fixed effects for year, commuting zone-by-technology field, and technology field-
by-year, along with controls for other institutional funding programs that vary by commuting zone and year.
Each panel presents separate estimates for commuting zones with either above- or below-median values of a
given characteristic measured prior to the SDP introduction (i.e., between 1960 and 1964). Panel (a) focuses on
commuting zones’ total patents per capita; panel (b) on total citation-weighted patents per capita; and panel
(c) on the share of total patents citing the scientific literature. The baseline period is τ = −1. Standard errors
are clustered at the commuting zone level. The vertical bars represent 95% confidence intervals. Estimations by
Poisson pseudo-maximum likelihood.
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Figure 10: The NSF Science Development Program and Local Patenting: Technology Field Exposure
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Notes: The figure plots βτ estimates from a specification equivalent to equation (1), where Iτ × SDPu is fur-
ther interacted with Exposureic, which measures the extent to which each technology field × commuting zone
pair was exposed to the research activities of co-located universities prior to the Science Development Program
introduction. The dependent variable is the number of patents filed in technology field i, commuting zone c,
and year t. The regression includes fixed effects for year, commuting zone-by-technology field, and technology
field-by-year, along with controls for other institutional funding programs that vary by commuting zone and year.
The baseline period is τ = −1. Standard errors are clustered at the commuting zone level. The vertical bars
represent 95% confidence intervals. Estimations by Poisson pseudo-maximum likelihood.
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Figure 11: The NSF Science Development Program and Local Patenting: Reliance on the Scientific
Literature
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Notes: The dependent variable is the number of patents filed in technology field i, commuting zone c, and year t.
The regression includes fixed effects for year, commuting zone-by-technology field, and technology field-by-year,
along with controls for other institutional funding programs that vary by commuting zone and year. The baseline
period is τ = −1. Standard errors are clustered at the commuting zone level. The vertical bars represent 95%
confidence intervals. Estimations by Poisson pseudo-maximum likelihood.
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Tables

Table 1: Universities Funded by the NSF Science Development Program

Name Academic Areas Starting Date

University of Oregon Computer, Physical, & Biological Sci. 5/1965

University of Colorado at Boulder Eng., Math., Physical Sci., Psych. 6/1965

Rice University Eng., Math., Systems Res. 6/1965

University of Rochester Biol., Chem. 6/1965

Washington University in St. Louis Biol., Chem., Eng., Phys. 6/1965

Case Western Reserve University Chem., Life Sci., Material Sci., Phys. 6/1965

University of Arizona Astron., Chem., Math., Phys. 7/1965

University of Florida Astron., Chem., Eng., Math., Phys 7/1965

University of Virginia Biol., Physical Sci. 7/1965

Louisiana State University Chem., Geol., Math., Phys. 11/1965

Polytechnic Institute of Brooklyn Chem., Electronics 11/1965

University of Southern California Physical Sci., Eng., Solid St. 11/1965

North Carolina State University Biomath., Eng. 5/1966

Purdue University Biol., Phys 5/1966

Rutgers University Math., Phys 5/1966

Tulane University Biol., Math., Psych 5/1966

Duke University Chem., Eng., Genet., Phys., Stat., Comp. Sci. 12/1966

University of Texas at Austin Physical, Social, & Biological Sci. 12/1966

Carnegie Mellon University Biol., Chem., Math., Phys. 5/1967

University of Maryland, College Park Atmospheric, Computer, & Physical Sci. 5/1967

University of North Carolina Chem., Phys., Social Sci. 5/1967

University of Notre Dame Biol., Chem., Phys. 5/1967

Vanderbilt University Geolog. Sci. 5/1967

Indiana University Chem., Computer Sci., Phys. 7/1967

University of Georgia Biological Sci. 8/1967

University of Iowa Endocrin., Genet., Neurobiol. 8/1967

Florida State University Chem., Phys., Psychbiol., Stat. 7/1968

Michigan State University Chem., Math., Phys. 9/1968

University of Washington, Seattle Env. Sci., Geol., Phys. 9/1968

New York University Phys., Psych. 6/1969

University of Pittsburgh Chem., Crystall., Phys. 9/1969

Notes: Information from the National Science Foundation Science Development Documentary Reports (NSF
1977a,b).
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Table 2: Top-ranked Universities in the U.S. in 1964

Cartter (1966) ranking Total federal research funds in 1964 ranking
Biological Sciences Physical Sciences Engineering National Science Foundation General Accounting Office

A. Comparison group
Brown University 28 29 11 60 -
California Institute of Technology 6 3 5 26 -
Columbia University 19 7 18 3 3
Cornell University 19 10 16 13 15
Harvard University 1 1 12 5 5
Johns Hopkins University 12 24 20 16 12
Massachusetts Institute of Technology 4 4 1 1 1
Ohio State University 39 20 29 19 19
Princeton University 33 5 14 28 20
Stanford University 7 6 4 4 4
University of California, Berkeley 2 2 2 8 9
University of California, Los Angeles 23 14 27 7 6
University of Chicago 37 9 - 9 7
University of Illinois Urbana-Champaign 10 11 7 6 8
University of Michigan 9 17 8 2 2
University of Minnesota 17 17 12 11 16
University of Pennsylvania 22 24 19 17 11
University of Wisconsin-Madison 7 13 9 10 10

B. SDP-funded
New York University 27 8 24 14 13
Purdue University 31 24 10 29 -
University of Texas at Austin 18 22 21 15 17

C. SSDP-funded
Northwestern University 40 23 15 27 -

Notes: The first three columns present each university’s rank in the biological sciences, physical sciences, and engineering, based on evaluation scores from Cartter (1966).
The universities listed are those ranked in the top twenty in at least one scientific domain and were categorized as “distinguished” or “strong” across all three domains—the
highest-rated categories by Cartter (1966) and the only ones assigned scores. The University of Chicago is included because it could not be ranked in engineering disciplines
(lacking engineering departments in the 1960s) and because it was explicitly mentioned by Page (1968) as an elite institution excluded from the SDP. The fourth and fifth
columns provide each university’s rank by total federal research funding received in 1964, based on data from the NSF (1967) and Comptroller General of the U.S. (1976),
respectively. Since the Comptroller General of the U.S. (1976) ranked only the top twenty universities, few institutions miss this information.
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Table 3: Commuting Zones Hosting SDP-funded and Top-ranked Universities

Commuting Zone Location Universities

A. Hosting SDP-funded universities

Eugene, OR University of Oregon

Seattle, WA University of Washington, Seattle

Tucson, AZ University of Arizona

Boulder and Denver, CO University of Colorado

Houston, TX Rice University

Austin, TX University of Texas, Austin

St. Louis, MO University of Washington, St. Louis

Iowa City, IA University of Iowa

Rochester, NY University of Rochester

Washington, DC University of Maryland, College Park

Charlottesville, VA University of Virginia

Pittsburgh, PA Carnegie Mellon University and University of Pittsburgh

Cleveland, OH Case Western Reserve University

Lafayette, IN Purdue University

Bloomington, IN Indiana University

South Bend, IN University of Notre Dame

Lansing, MI Michigan State University

Athens, GA University of Georgia

Gainesville, FL University of Florida

Chapel Hill, Durham, and Raleigh, NC Duke University, North Carolina State University, and UNC Chapel Hill

Nashville, TN Vanderbilt University

Baton Rouge, LA Louisiana State University at Baton Rouge

New Orleans, LA Tulane University

B. Hosting top-ranked universities (comparison group)

Berkeley and San Francisco, CA University of California, Berkeley

Santa Clara and San Jose, CA Stanford University

Madison, WI University of Wisconsin-Madison

Minneapolis, MN University of Minnesota

Ithaca and Elmira, NY Cornell University

Philadelphia, PA University of Pennsylvania

Boston, MA Massachusetts Institute of Technology and Harvard University

Providence, RI Brown University

Baltimore, MD Johns Hopkins University

Columbus, OH Ohio State University

Champaign, IL University of Illinois Urbana-Champaign

Detroit, MI University of Michigan

C. Hosting both SDP-funded and top-ranked universities

Los Angeles, CA Caltech, University of California, Los Angeles, and University of Southern California

New York City, NY Columbia University, New York University, and Polytechnic Institute of Brooklyn

Newark, NJ Princeton University and Rutgers University

Notes: Commuting zones defined according to the 1980 definition by Tolbert and Sizer (1996) and Autor and
Dorn (2013).
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Table 4: The NSF Science Development Program and Local Patenting: Two-Period Difference-in-Differences Results and Reliance on the Scientific Literature

Patents linked to the scientific lit. Share of patents linked to the scientific lit.

All Private firms’ Incumbents’ Direct Indirect Remote Direct Indirect Remote
patents patents patents D = 1 D ∈ {2, 3, 4} D ≥ 5 D = 1 D ∈ {2, 3, 4} D ≥ 5
(1) (2) (3) (4) (5) (6) (7) (8) (9)

A. All periods
Postτ × SDPc 0.123* 0.157** 0.169** 0.148* 0.301** 0.093 0.013* 0.004 -0.017*

(0.072) (0.072) (0.080) (0.080) (0.124) (0.063) (0.007) (0.007) (0.008)

Observations 32,215 31,463 31,311 29,458 27,197 31,633 23,316 23,316 23,316
Pseudo R2 and R2 0.842 0.832 0.825 0.703 0.692 0.805 0.371 0.297 0.411
Mean dep.var. 8.21 6.55 5.56 1.61 1.26 5.33 0.20 0.14 0.66

B. Until period 14
Postτ × SDPc 0.108** 0.136** 0.145** 0.141** 0.278*** 0.080* 0.016** 0.002 -0.018**

(0.055) (0.053) (0.070) (0.069) (0.102) (0.046) (0.006) (0.006) (0.007)

Observations 24,421 23,671 23,809 21,819 19,645 24,059 17,887 17,887 17,887
Pseudo R2 and R2 0.852 0.841 0.837 0.689 0.685 0.819 0.334 0.316 0.383
Mean dep.var. 8.52 6.65 5.99 1.55 1.11 5.87 0.19 0.12 0.70

Year FEs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
CZ × technology field FEs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Technology field × year FEs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Institutional grants controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notes: Standard errors are clustered at the commuting zone level and shown in parentheses. Estimations by Poisson pseudo-maximum-likelihood for patent counts and OLS
for shares. *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: The NSF Science Development Program and Local Patenting: Human Capital Creation and
University-Industry Formal Collaborations

Patents Patents not Patents Publications
co-filed co-filed co-filed co-authored
by local by local by local by local inventor

PhD grad. PhD grad. academic and academic
(1) (2) (3) (4)

A. All periods
Postτ × SDPc 0.273** 0.122* -0.608 0.713

(0.134) (0.072) (0.406) (0.923)

Observations 14,299 32,173 6,894 1,618
Pseudo R2 0.387 0.841 0.355 0.174
Mean dep. var 0.12 8.08 0.05 0.01

B. Until period 14
Postτ × SDPc 0.259** 0.106* -0.765 0.512

(0.126) (0.055) (0.478) (0.969)

Observations 9,450 24,381 3,128 565
Pseudo R2 0.354 0.851 0.268 0.099
Mean dep. var 0.10 8.42 0.03 0.01

Year FEs ✓ ✓ ✓ ✓
CZ × technology field FEs ✓ ✓ ✓ ✓
Technology field × year FEs ✓ ✓ ✓ ✓
Institutional grants controls ✓ ✓ ✓ ✓

Notes: Standard errors are clustered at the commuting zone-level and shown in parentheses. Estimations by
Poisson pseudo-maximum-likelihood. *** p<0.01, ** p<0.05, * p<0.1.
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A. Historical Context

Table A1: Research Universities in the U.S. in 1964

Name Location
American University Washington, D.C.
Boston University Boston, MA
Brandeis University Waltham, MA
Brown University Providence, RI
Bryn Mawr College Bryn Mawr, PA
California Institute of Technology Pasadena, CA
Carnegie Institute of Technology Pittsburgh, PA
Case Institute of Technology Cleveland, OH
Catholic University of America Washington, D.C.
Claremont Graduate University Claremont, CA
Columbia University New York, NY
Cornell University Ithaca, NY
Duke University Durham, NC
Emory University Atlanta, GA
Florida State University Tallahassee, FL
Fordham University New York, NY
George Washington University Washington, D.C.
Georgetown University Washington, D.C.
Georgia Institute of Technology Atlanta, GA
Harvard University Cambridge, MA
Illinois Institute of Technology Chicago, IL
Indiana University Bloomington Bloomington, IN
Iowa State University Ames, IA
Johns Hopkins University Baltimore, MD
Kansas State University Manhattan, KS
Lehigh University Bethlehem, PA
Louisiana State University Baton Rouge, LA
Loyola University Chicago Chicago, IL
Massachusetts Institute of Technology Cambridge, MA
Michigan State University East Lansing, MI
New Mexico State University Las Cruces, NM
The New School New York, NY
New York University New York, NY
North Carolina State University Raleigh, NC
Northwestern University Evanston, IL
Ohio State University Columbus, OH
Oregon State University Corvallis, OR
Pennsylvania State University University Park, PA
Polytechnic Institute of Brooklyn Brooklyn, NY
Princeton University Princeton, NJ
Purdue University West Lafayette, IN
Rensselaer Polytechnic Institute Troy, NY
Rice University Houston, TX
Rockefeller University New York, NY
Rutgers, The State University of New Jersey New Brunswick, NJ
Stony Brook University Stony Brook, NY
St. John’s University Queens, NY
Stanford University Stanford, CA
Syracuse University Syracuse, NY
Temple University Philadelphia, PA
Texas A&M University College Station, TX
Tufts University Medford, MA
Tulane University New Orleans, LA
University at Buffalo, The State University of New York Buffalo, NY
University of Alabama Tuscaloosa, AL
University of Arizona Tucson, AZ
University of Arkansas Fayetteville, AR
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University of California, Berkeley Berkeley, CA
University of California, Davis Davis, CA
University of California, Los Angeles Los Angeles, CA
University of Chicago Chicago, IL
University of Cincinnati Cincinnati, OH
University of Colorado Boulder Boulder, CO
University of Connecticut Storrs, CT
University of Delaware Newark, DE
University of Denver Denver, CO
University of Florida Gainesville, FL
University of Houston Houston, TX
University of Illinois Urbana-Champaign Champaign, IL
University of Iowa Iowa City, IA
University of Kansas Lawrence, KS
University of Kentucky Lexington, KY
University of Maryland, College Park College Park, MD
University of Massachusetts Amherst Amherst, MA
University of Michigan Ann Arbor, MI
University of Minnesota Minneapolis, MN
University of Missouri Columbia, MO
University of Nebraska-Lincoln Lincoln, NE
University of New Mexico Albuquerque, NM
University of North Carolina at Chapel Hill Chapel Hill, NC
University of North Dakota Grand Forks, ND
University of Notre Dame Notre Dame, IN
University of Oklahoma Norman, OK
University of Oregon Eugene, OR
University of Pennsylvania Philadelphia, PA
University of Pittsburgh Pittsburgh, PA
University of Rochester Rochester, NY
University of Southern California Los Angeles, CA
University of Tennessee, Knoxville Knoxville, TN
University of Texas at Austin Austin, TX
University of Utah Salt Lake City, UT
University of Virginia Charlottesville, VA
University of Washington Seattle, WA
University of Wisconsin-Madison Madison, WI
University of Wyoming Laramie, WY
Vanderbilt University Nashville, TN
Virginia Tech Blacksburg, VA
Washington State University Pullman, WA
Washington University in St. Louis St. Louis, MO
Wayne State University Detroit, MI
West Virginia University Morgantown, WV
Western Reserve University Cleveland, OH
Yale University New Haven, CT
Yeshiva University New York, NY

Notes: List of the research universities surveyed and ranked by Cartter (1966), which constitute the institutions
included in my sample.
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Table A2: NASA Sustaining University Program for Training, Research, and Facilities Grants (1962-
1971)

University Name Grant (Thousand $)
Boston University 383
Brandeis University 375
Brown University 1,192
California Institute of Technology 2,635
Carnegie Mellon University 1,136
Case Western Reserve University 4,569
Catholic University of America 1,046
Columbia University 3,008
Cornell University 3,117
Duke University 1,359
Emory University 197
Florida State University 682
Fordham University 230
George Washington University 2,158
Georgetown University 498
Georgia Institute of Technology 4,347
Harvard University 276
Illinois Institute of Technology 977
Indiana University 933
Iowa State University 1,037
Johns Hopkins University 900
Kansas State University 1,037
Lehigh University 767
Louisiana State University 1,285
Loyola University Chicago 672
Massachusetts Institute of Technology 10,989
Michigan State University 895
New York University 1,866
North Carolina State University 1,024
Northeastern University 435
Northwestern University 1,570
Ohio State University 1,022
Oregon State University 759
Pennsylvania State University 2,702
Princeton University 1,383
Purdue University West Lafayette 4,148
Rensselaer Polytechnic Institute 3,145
Rice University 4,010
Stanford University 6,029
Syracuse University 1,932
Temple University 177
Texas A&M University 3,194
Tufts University 229
Tulane University 795
University of Alabama 3,769
University of Arizona 2,633
University of Arkansas at Fayetteville 725
University of California, Berkeley 6,675
University of California, Davis 706
University of California, Los Angeles 7,041
University of Chicago 3,336
University of Cincinnati 1,296
University of Colorado Boulder 1,722
University of Connecticut 622
University of Delaware 578
University of Denver 2,633
University of Florida 3,852
University of Houston 2,394
University of Illinois Urbana-Champaign 3,366
University of Iowa 1,736
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University of Kansas 3,871
University of Kentucky 538
University of Maryland, College Park 5,612
University of Massachusetts Amherst 293
University of Michigan–Ann Arbor 2,825
University of Minnesota 6,134
University of Missouri 1,495
University of Nebraska–Lincoln 366
University of New Mexico 1,058
University of North Carolina at Chapel Hill 1,362
University of Notre Dame 760
University of Oklahoma 1,234
University of Pennsylvania 1,974
University of Pittsburgh 4,869
University of Rhode Island 337
University of Rochester 1,935
University of Southern California 2,996
University of Tennessee at Knoxville 1,975
University of Texas at Austin 901
University of Virginia 1,660
University of Washington 2,623
University of Wisconsin–Madison 7,515
Vanderbilt University 830
Virginia Tech 1,429
Washington State University 426
Washington University in St. Louis 3,411
Yale University 1,506
Yeshiva University 672

Notes: Total grants awarded by NASA under the Sustaining University Program for Training, Research, and
Facilities (NSF 1977a).
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Table A3: Department of Defense, project THEMIS Grants (1967-1971)

University Name Grant (Thousand $)
Catholic University of America 2,527
Case Western Reserve University 600
Florida State University 3,293
Georgetown University 808
Georgia Institute of Technology 1,441
Illinois Institute of Technology 1,594
Indiana University 796
Iowa State University 1,738
Kansas State University 1,868
Lehigh University 2,218
Louisiana State University 1,706
Michigan State University 400
North Carolina State University 1,689
Oregon State University 1,435
Rensselaer Polytechnic Institute 2,497
Rice University 1,419
Texas A&M University 2,456
University at Buffalo, State University of New York 1,525
University of Alabama 605
University of Arizona 808
University of Connecticut 814
University of Florida 1,333
University of Houston 910
University of Iowa 1,575
University of Kansas 1,393
University of Kentucky 812
University of Massachusetts Amherst 840
University of Minnesota 2,630
University of Missouri 769
University of New Mexico 852
University of North Dakota 1,051
University of Notre Dame 925
University of Oklahoma 768
University of Tennessee at Knoxville 1,540
University of Vermont 864
University of Virginia 2,369
Vanderbilt University 902
Washington University in St. Louis 1,614
West Virginia University 809
Yeshiva University 780

Notes: Total grants awarded by the Department of Defense under Project THEMIS (NSF 1977a).

Table A4: National Institutes of Health, Health Science Advancement Awards (1966-1974)

University Name Grant (Thousand $)
Cornell University 1,780
Duke University 2,516
Purdue University 2,542
Rice University 2,130
University of California, Davis 2,469
University of Colorado Boulder 2,655
University of Kansas 2,638
University of Oregon 2,097
University of Virginia 2,200
Vanderbilt University 2,491
Washington University in St. Louis 2,731

Notes: Total grants awarded by the National Institutes of Health under its Health Science Advancement Awards
program (NSF 1977a).
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Table A5: Ford Foundation, Special Program in Education (“Challenge”) Grants (1960-1966)

University Name Grant (Thousand $)
Brandeis University 6,000
Brown University 7,500
Columbia University 25,000
Duke University 8,000
Emory University 6,000
Illinois Institute of Technology 2,764
Johns Hopkins University 6,000
New York University 25,000
St Louis University 4,000
Stanford University 25,000
Tulane University 6,000
Univerisity of Chicago 25,000
University of Denver 5,000
University of Notre Dame 12,000
University of Southern California 6,500
Vanderbilt University 15,000
Washington University in St. Louis 15,000

Notes: Total grants awarded by the Ford Foundation under its Special Program in Education (NSF 1977a).
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Table A6: Cartter (1966) Biological Sciences Rankings

Bacteriology/Microbiology Biochemistry Botany Entomology Pharmacology Physiology Psychology Zoology Average Score Rank

Harvard University 4,04 4,63 4,25 - 4,35 4,52 4,58 4,56 4,42 1

University of California, Berkeley 4,51 4,54 4,63 4,56 3,52 3,90 4,35 4,67 4,34 2

Rockefeller University 4,31 4,34 - - - 4,18 - 4,31 4,29 3

Massachusetts Institute of Technology - 4,25 - - - - - - 4,25 4

University of Utah - - - - 3,98 - - - 3,98 5

California Institute of Technology 4,11 4,15 3,73 - - 3,85 - - 3,96 6

Stanford University 3,92 4,47 3,70 - 3,49 3,21 4,56 4,09 3,92 7

University of Wisconsin-Madison - 4,30 4,02 3,76 - 3,42 3,97 3,81 3,92 7

University of Michigan 3,32 3,47 4,17 - 4,11 3,69 4,40 3,80 3,85 9

University of Illinois Urbana-Champaign 4,21 3,75 3,39 3,93 3,44 3,49 4,08 3,60 3,74 10

University of Iowa - - - - 3,75 - 3,66 - 3,71 11

Yale University 3,52 3,37 3,30 - 4,02 3,29 4,35 3,96 3,69 12

Johns Hopkins University 3,63 3,93 - - 3,12 3,97 3,44 4,02 3,69 12

Emory University - - - - 3,68 - - - 3,68 14

Indiana University Bloomington 3,39 - 3,81 - - 3,24 3,62 3,95 3,60 15

Brandeis University 3,33 3,85 - - - - - - 3,59 16

University of Minnesota 3,63 - 3,16 3,61 3,55 3,73 3,98 3,21 3,55 17

University of Texas at Austin 3,51 - 3,75 - - - - 3,31 3,52 18

Columbia University 3,19 3,70 - - - 3,62 3,54 3,50 3,51 19

Western Reserve University 3,65 3,63 - - - 3,39 - 3,36 3,51 19

Duke University - 3,54 3,80 - - 3,41 3,34 3,44 3,51 19

University of Pennsylvania 3,41 3,42 3,01 - 4,07 3,70 3,63 3,29 3,50 22

University of California, Los Angeles 3,04 3,37 3,58 - - 3,54 3,58 3,85 3,49 23

University of California, Davis 3,47 3,16 3,92 3,32 - - - - 3,47 24

University of Washington 3,55 3,58 - - 3,02 3,96 - 3,20 3,46 25

Cornell University 3,06 3,19 3,46 3,87 3,60 3,52 3,33 3,48 3,44 26

New York University 3,26 3,60 - - - - - - 3,43 27

Brown University - - - - - - 3,73 3,09 3,41 28

Rutgers, The State University of New Jersey 3,41 - - - - - - - 3,41 28

University of Rochester - - - - 3,26 3,55 - - 3,41 28

University of Kansas - - - 3,71 3,05 - - - 3,38 31

Purdue University 3,57 - 3,41 - - - - 3,15 3,38 31

University at Buffalo - - - - - 3,37 - - 3,37 33

Princeton University - 3,21 - - - 3,50 3,14 3,62 3,37 33

Yeshiva University 3,04 3,42 - - 3,72 3,25 - - 3,36 35

Washington University in St. Louis - 3,35 - - 3,61 3,11 - - 3,36 35

University of Chicago 3,32 3,40 3,02 - 3,10 3,57 3,37 3,70 3,35 37

Tufts University - 3,33 - - - - - - 3,33 38

Ohio State University - - - 3,38 - - 3,24 - 3,31 39

Northwestern University - - - - - 3,05 3,43 3,18 3,22 40

Michigan State University - - 3,41 - - - 3,02 - 3,22 40

University of Pittsburgh 3,07 3,21 - - - - - - 3,14 42

North Carolina State University - - 3,26 - - - 3,01 - 3,14 42

Claremont Graduate University - - 3,08 - - - - - 3,08 44

Iowa State University - - - 3,06 - - - - 3,06 45

Kansas State University - - - 3,04 - - - - 3,04 46

University of Oregon - - - - - 3,02 - - 3,02 47

Vanderbilt University - - - - 3,02 - - - 3,02 47

Notes: Scores are derived from Cartter’s (1966) evaluation of universities’ “quality of graduate faculty,” based on a 1964 survey of U.S. scholars.
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Table A7: Cartter (1966) Physical Sciences Rankings

Astronomy Chemistry Geology Mathematics Physics Average Score Rank

Harvard University 4,08 4,95 4,45 4,85 4,71 4,61 1

University of California, Berkeley 4,10 4,68 4,38 4,81 4,78 4,55 2

California Institute of Technology 4,81 4,72 4,38 3,66 4,77 4,47 3

Massachusetts Institute of Technology - 4,55 3,96 4,39 4,45 4,34 4

Princeton University 4,62 3,67 3,98 4,79 4,60 4,33 5

Stanford University - 4,32 3,94 4,19 4,47 4,23 6

Columbia University - 4,00 4,28 4,02 4,32 4,16 7

New York University - - - 4,10 - 4,10 8

University of Chicago 4,12 3,91 3,30 4,60 4,00 3,99 9

Cornell University - 3,77 - 3,70 4,07 3,85 10

University of Illinois Urbana-Champaign - 4,13 3,32 3,74 4,10 3,82 11

Yale University 3,39 3,76 3,76 4,13 3,77 3,76 12

University of Wisconsin-Madison 3,25 4,00 3,45 3,88 3,69 3,65 13

University of California, Los Angeles - 3,92 3,67 3,47 3,12 3,55 14

Pennsylvania State University - 3,13 3,82 - - 3,48 15

University of Rochester - - - - 3,46 3,46 16

University of Michigan 3,20 3,25 3,32 3,86 3,46 3,42 17

University of Minnesota - 3,51 3,37 3,48 3,31 3,42 17

Iowa State University - 3,40 - - - 3,40 19

Ohio State University - 3,37 - - - 3,37 20

University of Maryland, College Park - - - - 3,35 3,35 21

University of Texas at Austin - 3,14 3,50 - - 3,32 22

Northwestern University - 3,52 3,19 3,21 - 3,31 23

University of Pennsylvania - - - 3,15 3,37 3,26 24

Johns Hopkins University - 3,17 3,50 3,23 3,12 3,26 24

Purdue University - 3,37 - 3,14 - 3,26 24

University of Washington - 3,18 - 3,39 3,16 3,24 27

Brandeis University - - - 3,24 - 3,24 27

Brown University - 3,02 - 3,36 - 3,19 29

University of Virginia - - - 3,13 - 3,13 30

Indiana University Bloomington - 3,24 - 3,02 - 3,13 30

Carnegie Institute of Technology - - - - 3,09 3,09 32

Rice University - 3,06 3,12 - - 3,09 33

Polytechnic Institute of Brooklyn - 3,08 - - - 3,08 34

Florida State University - 3,06 - - - 3,06 35

Notes: Scores are derived from Cartter’s (1966) evaluation of universities’ “quality of graduate faculty,” based on a 1964 survey of U.S. scholars.
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Table A8: Cartter (1966) Engineering Rankings

Chemical Engineering Civil Engineering Electrical Engineering Mechanical Engineering Average Score Rank

Massachusetts Institute of Technology 4,36 4,17 4,78 4,61 4,48 1

University of California, Berkeley 4,24 4,52 4,38 3,83 4,24 2

University of Delaware 4,13 - - - 4,13 3

Stanford University 3,42 3,86 4,68 4,14 4,03 4

California Institute of Technology 3,53 4,09 3,98 4,20 3,95 5

Polytechnic Institute of Brooklyn - - 3,94 - 3,94 6

University of Illinois Urbana-Champaign 3,80 4,40 4,13 3,33 3,92 7

University of Michigan 4,13 3,62 3,68 3,50 3,73 8

University of Wisconsin-Madison 4,43 3,22 3,34 - 3,66 9

Purdue University - 3,70 3,51 3,65 3,62 10

Brown University - - - 3,58 3,58 11

University of Minnesota 4,25 3,08 3,24 3,72 3,57 12

Harvard University - - 3,60 3,54 3,57 12

Princeton University 4,25 - 3,24 3,19 3,56 14

Northwestern University 3,42 3,41 - 3,27 3,37 15

Cornell University - 3,42 3,25 3,32 3,33 16

Carnegie Institute of Technology 3,33 - 3,33 - 3,33 16

Columbia University - 3,37 3,34 3,26 3,32 18

University of Pennsylvania - - 3,29 - 3,29 19

Johns Hopkins University - - 3,28 3,23 3,26 20

University of Texas at Austin 3,35 3,14 - - 3,25 21

Rice University 3,18 - - - 3,18 22

Syracuse University - - 3,16 - 3,16 23

New York University - - 3,13 - 3,13 24

Lehigh University - 3,12 - - 3,12 25

Case Institute of Technology - - 3,02 3,20 3,11 26

University of California, Los Angeles - - 3,08 3,12 3,10 27

University of Washington 3,05 3,12 - - 3,09 28

Ohio State University - - 3,04 - 3,04 29

Notes: Scores are derived from Cartter’s (1966) evaluation of universities’ “quality of graduate faculty,” based on a 1964 survey of U.S. scholars.
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Figure A1: Cartter’s (1966) List of Scientific Disciplines by Domain

Notes: Reproduced from Cartter (1966, p. 20).
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Figure A2: Examples of Cartter’s (1966) Rankings

(a) Bacteriology/Microbiology (b) Physics (c) Electrical Engineering

Notes: The panels present examples of Cartter’s (1966) university rankings for the “quality of graduate faculty,” with one example for each broader scientific domain. Scores
are assigned exclusively to institutions categorized as “distinguished” or “strong.” In Table A6, Table A7, and Table A8 I use scores based on the evaluation of all survey
respondents, that is, (department) “Chairmen”, “Senior scholars”, and “Junior scholars.”
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B. Inventor Disambiguation

Patent data do not natively provide unique identifiers for the same inventor across different

patents. That is because intellectual property offices such as the USPTO do not require in-

ventors to submit their information using standardized identifiers during the patent application

process. Without them, researchers interested in studying individual inventors’ careers face

name ambiguity issues, unable to determine whether inventors sharing the same name corre-

spond to the same person or to homonyms. Over the past two decades, scholars reliant on

patent data developed disambiguation algorithms to obtain consistent inventor identifiers (e.g.,

Trajtenberg et al. 2006; Li et al. 2014; Pezzoni et al. 2014). These algorithms group inventors

with the same name and leverage auxiliary information from patent documents, such as in-

ventors’ residential locations, co-inventors, patent assignees, and technology classes to identify

inventor records referring to the same individual. In 2015, the USPTO adopted an inventor

disambiguation algorithm developed by Monath et al. (2021), distributing the unique inventor

identifiers generated by the algorithm in USPTO’s database “PatentsView”.24

Despite being the most comprehensive source of USTO patent data, the PatentsView database

includes only “modern” patents, those granted since 1975. That does not suit the purposes of my

project, which relies also on “historical” patents, those granted before 1975 (Andrews 2021a).

To address this challenge, I disambiguate all inventors filing a patent at the USPTO and residing

in the US between 1920 and 2015. I adopt Monath et al.’s 2021 algorithm, a machine learning

procedure combining supervised classification and hierarchical agglomerative clustering (HAC),

and extend it to disambiguate inventors listed on both modern and historical patents.

I start by creating a training set of inventors from modern patents disambiguated by Monath

et al. (2021). Similar to Akcigit et al. (2022)—who also generate unique identifiers for historical

inventors using a training set of disambiguated modern inventors—I rely on two assumptions.25

First, I assume that Monath et al.’s 2021 disambiguation is generally correct. I find this as-

sumption reasonable: evaluations of Monath et al.’s 2021 algorithm against manually labeled

inventor data reveal minimal errors, outperforming previous disambiguation algorithms, mak-

ing it the best inventor disambiguation currently available to patent data researchers. Second,

I assume that the features enabling the disambiguation of modern inventors have the same

predictive power for the disambiguation of inventors from historical inventors.

My training set is based on a random extraction of 2 million disambiguated inventor mentions

(i.e., unique inventor-patent instances). I group inventor mentions into “canopies” (McCallum

24The source code for PatentsView disambiguation process based on Monath et al.’s 2021 algorithm can be
found at https://github.com/PatentsView/PatentsView-Disambiguation.

25Akcigit et al. (2022) use inventor records disambiguated by Li et al. (2014).
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et al. 2000), that is, clusters of inventor mentions sharing the same last name and the first two

initials of their first name. Each canopy contains a set of inventor pairs which may refer to the

same individual. I obtain a training set of 25,644,056 inventor pairs. I also create a development

set of 64,725 inventor pairs, based on a subsequent random extraction of 100,000 disambiguated

inventor mentions not found in the training set.

Next, I train a logistic classifier to predict whether each inventor pair refers to the same

individual. Following Monath et al. (2021), my features include:

- Same first name (binary)

- Jaro-Winkler similarity score for the first name

- Same middle name or no middle name for both records (binary)

- Same city of residence (binary)

- Same county of residence (binary)

- Same state of residence (binary

- Same assignee string (binary)

- Assignee string Jaro-Winkler similarity > 0.9 (binary)

- At least one common co-inventor (binary)

- Same NBER technology category, USPC technology class, and USPC technology sub-class

(all binary)26

In order to fine-tune my algorithm, I use the predicted scores generated by my logistic

classifier and create a set of distance matrices, one for each canopy in the development set.

Each score ranges between 0 (minimum distance) and 1 (maximum distance). I set maximum

distance scores for inventor pairs with a different middle name or whose patents were filed more

than 40 years apart.

I then apply hierarchical agglomerative clustering (HAC), a method that iteratively clusters

inventors within the same canopy based on their respective distance matrix scores. I determine

the optimal distance threshold to halt the HAC process (and finalize the set of disambiguated

inventors) as the score jointly maximizing precision and recall. In my context, precision quan-

tifies the algorithm’s accuracy in grouping inventors correctly. It is calculated as the ratio of

“true positives” (correctly clustered inventor pairs) to the total number of true positives and

“false negatives” (incorrectly clustered inventor pairs). Recall, on the other hand, measures

the algorithm’s completeness in identifying all inventors that should be grouped together. It

is calculated as the ratio of true positives to the sum of true positives and “false negatives”

26The primary difference between my features and those used by Monath et al. (2021) lies in the method
for determining technological overlap between two patents. While Monath et al. (2021) use textual similarity
between patent titles, I rely on technological classification codes like the NBER and USPC because titles are not
readily available for historical patents.
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(inventor pairs that should have been clustered together but were not).

Figure B.1 shows the frontier of the precision-recall curve, computed by comparing the dis-

ambiguated inventor identifiers generated by the HAC process at several distance threshold

increments with the “true” disambiguated status of each pair in the development set. I cal-

culate the optimal distance threshold using the F-beta score, that is, the weighted harmonic

mean of precision and recall. I introduce a weight of 0.4 for precision, aiming to privilege the

minimization of false positives. I determine an optimal distance threshold of 0.25, associated

to a precision score of 0.986 and a recall score of 0.946.

I conclude my procedure by disambiguating all inventors in my dataset, which involves cre-

ating the set of inventor canopies and similarity matrices, running the HAC algorithm until the

optimal distance threshold of 0.25, and generating a unique identifier for each disambiguated

inventor. I count around 2.5 million inventor mentions from historical patents and 5.4 mil-

lion inventor mentions from modern patents, generating a set of 374 million inventor pairs

grouped into canopies. My final dataset includes 2,352,799 disambiguated inventors associated

to 4,653,426 patents.

I evaluate the performance of my algorithm through the following steps. First, I focus

on inventors from modern patents and assess the overlap between my disambiguated inventor

clusters and those of Monath et al. (2021) by calculating the Normalized Mutual Information

(NMI) score and the Adjusted Rand Index (ARI). Intuitively, NMI quantifies the similarity

between two clustering results of the same dataset, yielding a score from 0 (completely dissimilar

clustering) to 1 (perfectly identical clustering). ARI measures the agreement between two

clustering results while adjusting for the possibility of random agreement, with values ranging

from -1 (completely dissimilar clustering) to 1 (perfectly identical clustering). I obtain an NMI

score of 0.995 and an ARI score of 0.960, suggesting that my disambiguation for modern patent

inventors is nearly identical to that of Monath et al. (2021).

Second, similar to Akcigit et al. (2022), I search for the top 50 most prolific inventors in

my dataset in a list of the most prolific inventors known stored on Wikipedia. A significant

challenge for any disambiguation algorithm is distinguishing between homonymous inventors

working in the same location and similar technology fields. A low-quality disambiguation process

would generate false profiles of top prolific inventors by incorrectly clustering inventors with

common names under the same profile. Out of the 50 inventors, I found 45 in the Wikipedia

list and confirmed the identities of the remaining five by consulting their biographical profiles

on companies’ or universities’ websites (Table B.1 and Table B.2).

Since Wikipedia tracks inventor careers up to 2024 and includes patents filed at intellectual
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property offices other than the USPTO, I cannot directly compare the exact number of patents

in each inventor’s portfolio predicted by my algorithm. Nevertheless, when I focus only on

inventors whose entire careers are covered by my dataset, I find minimal differences (Table

B.3), both for inventors listed only on modern patents and those with portfolios consisting

solely of historical or a mix of historical and modern patents.

Figure B1: Precision-Recall Curve

Notes: Precision and recall scores computed by comparing the “true” disambiguated status of inventor pairs in
the development set with disambiguated inventors generated by the HAC process at distance thresholds between
0.01 and 1 with 0.01 increments.
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Table B1: Top 50 Most Prolific Inventors: Manual Search Results

Name Total patents Found on Wikipedia Found in other sources
Gurtej S. Sandhu 1157 ✓
Leonard Forbes 1074 ✓
Lowell L. Wood, Jr. 1021 ✓
Donald E. Weder 992 ✓
George A. Lyon 908 ✓
Melvin De Groote 882 ✓
Jay S. Walker 853 ✓
Warren M. Farnworth 763 ✓
Edward K. Jung 722 ✓
Roderick A. Hyde 722 ✓
George Spector 710 ✓
Salman Akram 699 ✓
William H. Eby 697 ✓
Austin Gurney 668 ✓
James A. Jorasch 668 ✓
William I. Wood 663 ✓
Michael J. Sullivan 643 ✓
Ahmadreza Rofougaran 630 ✓
Rick A. Hamilton II 626 ✓
Audrey Goddard 622 ✓
Clarence T. Tegreene 615 ✓
Kie Y. Ahn 604 ✓
Paul Godowski 593 ✓
Jeyhan Karaoğuz 567 ✓
Mark I. Gardner 515 ✓
Lee D. Whetsel 514 ✓
Edward J. Nowak 511 ✓
Kangguo Cheng 500 ✓
John F. O’Connor 499 ✓
Ravi K. Arimilli 498 ✓
Geoffrey B. Rhoads 492 ✓
Nathan P. Myhrvold 490 ✓
Clyde C. Farmer 490 ✓
Anthony J. Baerlocher 489 ✓
Edwin H. Land 485 ✓
Jack A. Mandelman 481 ✓
Frankie F. Roohparvar 478 ✓
Mark A. Malamud 473 ✓
Louis H. Morin 469 ✓
Louis L. Hsu 467 ✓
Royce A. Levien 466 ✓
Muriel Y. Ishikawa 445 ✓
Robert W. Lord 442 ✓
David R. Hall 435 ✓
Niall R. Lynman 427 ✓
Jeffrey P. Gambino 421 ✓
Shmuel Shaffer 420 ✓
James M. Hart 419 ✓
Scott H. Wittkopp 418 ✓
John D. Rinaldo, Jr. 410 ✓

Notes: Results of my search for the top 50 most prolific inventors ranked by my disambiguation algorithm
among Wikipedia’s top prolific inventors (https://en.wikipedia.org/wiki/List_of_prolific_inventors and
https://en.wikipedia.org/wiki/Talk:List_of_prolific_inventors; last access: December 2024).
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Table B2: Biographical Details of Inventors Not Found Among Wikipedia’s Prolific Inventors

Name Biographical extract Source
Jeyhan Karaoğuz “Dr. Karaoğuz conducted pioneering research and devel-

opment in broadband network access, wireless connectiv-

ity, and mobile devices in their early days. He is a prolific

inventor with 764 US patents awarded to his name.”

North Carolina State

University, Department

of Computer Science

(2023)
Geoffrey B. Rhoads “Mr. Rhoads, the inventor of ZuluTime’s technology,

started his career at Tektronix, becoming the princi-

pal designer of the first commercially available 1 GHz

digitizing oscilloscope. He was the chief scientist in

working with key customers/applications such as Los

Alamos/Livermore in the then nascent commercial efforts

toward fiber optics and laser communications systems. In

1994, Mr. Rhoads founded Digimarc Corporation as its

Chief Technology Officer and inventor of digital water-

marking technology. At Digimarc he led the intellectual

property and technology development, directly resulting

in over 600 patents awarded to the company to date.”

Crunchbase (2024)

Frankie F. Roohparvar “In his new role, Roohparvar will serve as chief strategy

officer. Prior to joining Xitore, he served as VP and

senior strategic advisor at HGST (a WD company). He

became part of the HGST team as a result of HGST’s

acquisition of Skyera, an all flash array storage start-up,

where he served as the CEO. Prior to joining Skyera,

he was the GM and VP of the NAND business unit at

Micron Technology. He is a prolific inventor and has over

500 U.S. patents.”

StorageNewsletter

(2016)

Niall R. Lynman “Niall R Lynam, a prolific inventor based in Holland, MI,

United States, [. . . ] has made significant contributions

to the field of vehicular control systems. With an im-

pressive portfolio of 604 patents, Lynam’s expertise lies

in developing advanced technologies that enhance driver

assistance and improve overall vehicle safety.”

IDiyas (2024)

Shmuel Shaffer “Before joining Cisco in 1999, Dr. Shaffer held manage-

rial positions at Siemens ROLM where he headed the

Voice over IP (VoIP) development, the U.S. Hardware

organization, and the Embedded SW development. Dr.

Shaffer received his Ph.D. from Stanford University in

the area of Adaptive Self Optimizing Systems. He also

holds two Masters Degrees from Stanford in Electrical

Engineering and in Statistics. Dr. Shaffer has authored

over 250 US patents.”

Stanford University, De-

partment of Electrical

Engineering (2011)

Notes: The table reports the biographical details and source I used to confirm the identity of the five inven-
tors ranked among the top 50 most prolific inventors by my disambiguation algorithm, but not found among
Wikipedia’s prolific inventors.
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Table B3: Comparison of Total Inventor Patent Stocks: Disambiguation Algorithm vs. Wikipedia’s List

Name Years of activity Total patents Total patents (Wikipedia)
Donald E. Weder 1978-2015 992 1000
Melvin De Groote 1924-1966 882 925
George Spector 1974-1998 710 723
Kie Y. Ahn 1970-2013 604 622
Paul Godowski 1994-2010 593 579
Edwin H. Land 1933-1990 485 535
Jack A. Mandelman 1987-2014 481 481
Louis H. Morin 1924-1969 469 503

Notes: The table shows the total number of patents associated to top prolific inventors by my disambiguation
algorithm and compares it to the total number of patents found on their profile on Wikipedia’s list of top prolific
inventors. Since Wikipedia’s covers patents filed until 2024, I restrict the sample to inventors whose entire careers
are covered by my dataset (1920-2015).
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C. Additional Descriptive Evidence

Figure C1: Distribution of Patenting Share Funded by Federal Agencies
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Notes: The figure displays the distribution of the share of patents funded by either the Department of Defense,
Department of Energy, Department of Health and Human Services, and NASA in each technology field, com-
muting zone, and year cell. The distribution is conditional on there being non-zero patenting activity. The data
on federally funded patents is sourced from Gross and Sampat (2024).
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Figure C2: Commuting Zone Pre-SDP Characteristics: Kernel Density Distribution
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Notes: Each panel shows the kernel density distribution of a given commuting zone characteristic measured prior
to the SDP introduction (i.e., between 1960 and 1964). Panel (a) focuses on commuting zones’ total patents per
capita; panel (b) on total citation-weighted patents per capita; and panel (c) on the share of total patents citing
the scientific literature.

Table C1: Commuting Zone Pre-SDP Characteristics: Correlation Matrix

Cit.-weighted Share of patents citing
Patents per capita patents per capita the scientific lit.

Patents per capita 1.0000

Cit.-weighted patents per capita 0.6776 1.0000

Share of patents citing the scientific lit. 0.1210 0.1607 1.0000

21



Figure C3: Distribution of Exposureic
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Notes: The figure displays the distribution of Exposureic =
∑

j sicj · scj , measuring the intellectual overlap
between the sources of knowledge for firms active in technology field-commuting zone pairs ic and the knowledge
produced by universities in the same commuting zone c, across all journals j.
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D. Additional Estimates

Figure D1: Commuting Zones Trends Prior to the Science Development Program
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Notes: Coefficients from regressions where the total employment or the total number of establishments in a
commuting zone is regressed on year dummies interacted with an indicator equal to 1 for commuting zones
hosting an SDP-funded university and equal to 0 for those hosting a top-ranked university. All regressions
include year and commuting zones fixed effects and standard errors are clustered at the commuting zone level.
The baseline year is 1964. Vertical bars represent 95% confidence intervals. Standard errors are clustered at
the commuting zone level. Estimations by Poisson pseudo-maximum likelihood. Employment and establishment
data is from the County Business Pattern data digitized by Eckert et al. (2022) and available for the years: 1951,
1953, 1956, 1959, 1962, and 1964.
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Figure D2: The NSF Science Development Program and Local Patenting: Local vs. Not-Local Assignees
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Notes: The dependent variable is the number of patents filed in technology field i, commuting zone c, and year t.
The regression includes fixed effects for year, commuting zone-by-technology field, and technology field-by-year,
along with controls for other institutional funding programs that vary by commuting zone and year. The baseline
period is τ = −1. Standard errors are clustered at the commuting zone level. The vertical bars represent 95%
confidence intervals. Estimations by Poisson pseudo-maximum likelihood.
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Figure D3: The NSF Science Development Program and Local Patenting: Technology Field Exposure
(including technology field-commuting zone-specific time trends)
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Notes: The figure plots βτ estimates from a specification equivalent to equation (1), where Iτ × SDPu is fur-
ther interacted with Exposureic, which measures the extent to which each technology field × commuting zone
pair was exposed to the research activities of co-located universities prior to the Science Development Program
introduction. The dependent variable is the number of patents filed in technology field i, commuting zone c,
and year t. The regression includes fixed effects for year, commuting zone-by-technology field, and technology
field-by-year, along with controls for other institutional funding programs that vary by commuting zone and year.
It also includes technology field-commuting zone-specific time trends. The vertical bars represent 95% confidence
intervals. The coefficient for the baseline period τ = −1 is set to zero and shown without confidence interval.
Standard errors are clustered at the commuting zone level. Estimations by Poisson pseudo-maximum likelihood.
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Figure D4: The NSF Science Development Program and Local Patenting: Reliance on the Scientific
Literature (Only In-text Citations)
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(b) Patents indirectly linked to the scientific
literature (D ∈ {2, 3, 4})
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(c) Patents remotely linked to the scientific
literature (D ≥ 5)

Notes: The dependent variable is the number of patents filed in technology field i, commuting zone c, and year t.
The regression includes fixed effects for year, commuting zone-by-technology field, and technology field-by-year,
along with controls for other institutional funding programs that vary by commuting zone and year. The baseline
period is τ = −1. Standard errors are clustered at the commuting zone level. The vertical bars represent 95%
confidence intervals. Estimations by Poisson pseudo-maximum likelihood.
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Table D1: The NSF Science Development Program and Local Patenting: Two-Period Difference-in-Differences Results and Reliance on the Scientific Literature
(Only In-text Citations)

Patents linked to the scientific lit. Share of patents linked to the scientific lit.

All Private firms’ Incumbents’ Direct Indirect Remote Direct Indirect Remote
patents patents patents D = 1 D ∈ {2, 3, 4} D ≥ 5 D = 1 D ∈ {2, 3, 4} D ≥ 5
(1) (2) (3) (4) (5) (6) (7) (8) (9)

A. All periods
Postτ × SDPc 0.123* 0.157** 0.169** 0.140* 0.297** 0.093 0.013** 0.002 -0.015*

(0.072) (0.072) (0.080) (0.079) (0.123) (0.065) (0.007) (0.007) (0.009)

Observations 32,215 31,463 31,311 28,813 27,207 31,815 23,316 23,316 23,316
Pseudo R2 and R2 0.842 0.832 0.825 0.693 0.698 0.805 0.353 0.310 0.375
Mean dep.var. 8.21 6.55 5.56 1.41 1.31 5.48 0.17 0.15 0.68

B. Until period 14
Postτ × SDPc 0.108** 0.136** 0.145** 0.138* 0.278*** 0.080* 0.016** 0.002 -0.018**

(0.055) (0.053) (0.070) (0.070) (0.102) (0.047) (0.006) (0.006) (0.008)

Observations 24,421 23,671 23,809 21,473 19,784 24,103 17,887 17,887 17,887
Pseudo R2 and R2 0.852 0.841 0.837 0.684 0.690 0.819 0.326 0.325 0.364
Mean dep.var. 8.52 6.65 5.99 1.45 1.13 5.94 0.17 0.12 0.71

Year FEs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
CZ × technology field FEs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Technology field × year FEs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Institutional grants controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notes: Standard errors are clustered at the commuting zone level and shown in parentheses. Estimations by Poisson pseudo-maximum-likelihood for patent counts and OLS
for shares. *** p<0.01, ** p<0.05, * p<0.1.
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